ASKING ABOUT 'WHICH': IMPROVING SUBSTANTIVE INTERPRETATIONS OF DURATION MODELS

Shawna K. Metzger
University Scholars Programme
National University of Singapore
smetzger@nus.edu.sg

Benjamin T. Jones
Department of Political Science
University of Mississippi
btjones1@olemiss.edu

24March 2017

How should we consider modeling binary time-series cross-section (BTSCS) data?

How should we consider modeling binary time-series cross-section (BTSCS) data?

Logit/Probit models

How should we consider modeling binary time-series cross-section (BTSCS) data?

- Logit/Probit models
- Cox duration models

How should we interpret Cox model results?

How should we interpret Cox model results?

Transition probabilities

BTSCS: Current

- Event occurrence
- Possible duration dependence

BTSCS: Current

- Event occurrence
- Possible duration dependence
- Splines (Beck, Katz, and Tucker 1998)
- Time polynomials (Carter and Signorino 2010)

I. BTSCS II. The Cox III. Trans. Probs. IV. Conclusio

BTSCS: Challenges

BTSCS: Challenges

Baseline hazard misspecification

BTSCS: Challenges

- Baseline hazard misspecification
- Proportional hazards (PH) violation(s)

BTSCS: Challenges

- Baseline hazard misspecification
- Proportional hazards (PH) violation(s)
- 3. Onset vs. ongoing (McGrath 2015)

I. BTSCS II. The Cox III. Trans. Probs. IV. Conclusion

Cox Duration Models

Whether vs. when

Whether vs. when

Semi-parametric

Whether vs. when

- Semi-parametric
- 2. Well-established PH tests

Whether vs. when

- Semi-parametric
- Well-established PH tests
- Flexibility
 (Jones and Branton 2005, Metzger and Jones 2016)

"This approach [logit with time polynomials] is functionally equivalent to a traditional duration analysis and **offers clearer interpretation**."

(emphasis added, Hall and Ura 2015, 824)

Proportional hazard model

- Proportional hazard model
- h(t): risk of experiencing event for an infinitesimally small increase in t's value

- Proportional hazard model
- h(t): risk of experiencing event for an infinitesimally small increase in t's value

Hazard ratios

- Proportional hazard model
- h(t): risk of experiencing event for an infinitesimally small increase in t's value

- Hazard ratios
- \blacksquare % change in h(t) (Box-Steffensmeier and Jones 2004)

The probability of a subject experiencing the event by time t, given:

- The probability of a subject experiencing the event by time t, given:
 - Starting point ("stage")
 - Starting time
 - Covariate profile

- The probability of a subject experiencing the event by time t, given:
 - Starting point ("stage")
 - Starting time
 - Covariate profile
- R (mstate), Stata (in progress)

How does a dyad's level of economic interdependence affect whether it experiences a MID?

How does a dyad's level of economic interdependence affect whether it experiences a MID?

in dataset

i not in dataset

MID Onset

I. BTSCS II. The Cox III. Trans. Probs. IV. Conclusion

MID Onset

I. BTSCS II. The Cox III. Trans. Probs. IV. Conclusion

MID Onset

How does legislative support affect the risk of significant legislation being invalidated by the Supreme Court?

How does legislative support affect the risk of significant legislation being invalidated by the Supreme Court?

in dataset

not in dataset

Judicial Invalidation—s = o

Judicial Invalidation—s = 10

	Logit	Cox
Allies	-0.205*	-0.081
	(0.090)	(0.062)
Democracy (Low)	-0.064**	-0.065**
	(0.007)	(0.005)
Joint IGOs	0.011**	0.021**
	(0.002)	(0.002)

	Logit	Cox	Cox with PH Corrections
Allies	-0.205*	-0.081	-0.261**
	(0.090)	(0.062)	(0.091)
Democracy (Low)	-0.064**	-0.065**	-0.056**
	(0.007)	(0.005)	(0.007)
Joint IGOs	0.011**	0.021**	0.037**
	(0.002)	(0.002)	(0.003)
Allies * ln(Time)			0.103*
			(0.044)
Democracy * In(Time)			-0.006 [†]
			0.0034
Joint IGOs * In(Time)			-0.012**
			(0.001)

 $[\]dagger = p \le 0.10$, * = $p \le 0.05$, ** = $p \le 0.01$, two-tailed tests.

•••••

PH Violations

Logit: -, SS

The Effect of Alliances

Logit: +, SS

The Effect of Joint IGO Membership

Logit: –, SS

The Effect of Democracy

Modeling Onset & Duration

Onset & Duration + PH

	Cox
Economic Interden (Low)	-28.15**
Economic Interdep. (Low)	(6.017)

Onset & Duration + PH

	Cox	Two-Stage Cox + PH	
		Peace → MID	MID → Peace
Economic Interdep. (Low)	_	-23.230**	12.620**
		(6.000)	(3.420)

Summary

- Cox duration models for modeling BTSCS data
- Transition probabilities to interpret

I. BTSCS II. The Cox III. Trans. Probs. IV. Conclusion

Summary

- Cox duration models for modeling BTSCS data
- Transition probabilities to interpret
- Adaptability, PH violation corrections

I. BTSCS II. The Cox III. Trans. Probs. IV. Conclusion

Summary

- Cox duration models for modeling BTSCS data
- Transition probabilities to interpret
- Adaptability, PH violation corrections
- More holistic perspective

Questions?