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Objectives

1 Expand network theory to a new class of problems:
� E.g.: coalition-building, diffusion, tipping-point processes;
� Beyond network of edges among nodes to networks of edges among

edges;

2 Demonstrate a statistical way to model such processes—a local
structure graph model (LSGM);

� Monte Carlo results;
� Two empirical applications.
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◮ Edges are connected if they share a common node;
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◮ Edges are connected if they share a common node;

◮ Edges among edges may represent other types of relationships among
edges;

◮ Edges may be connected if they both connect the two nodes of the
same color or two odd-numbered nodes.
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Continuous Edge Connectivities
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Political Applications: Allies 1955
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◮ This framework allows for modeling
alliance formation as a function of
nodal and edge-level covariates;
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◮ This framework allows for modeling
alliance formation as a function of
nodal and edge-level covariates;

◮ Many theories suggest that alliance
edges realize in response to realization

of other edges (e.g., balancing against
ideological threat, “birds-of-a-feather”);

◮ Need to treat alliances as nodes and
measure relationships among them—a
network of edges among edges;

◮ Similar logic applies to modeling
formation of legislative coalitions or
advocacy groups.
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Placing Alliances within Ideational Space

◮ Ideal Point scores based on UNGA voting (Bailey, Strezhnev, &
Voeten, 2016):

� All states, between 1946-2007;
� Range between ±3, standard normal distribution;
� US scores range between 1.18 and 2.06;
� Russia/Soviet Union–between -2.74 and 1.12;

◮ Use each alliance partner score as (x , y) in Cartesian space.

◮ Distance between alliances measures ideational distance.
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Ideational Distance Among Alliances: 1955
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Alliances: 1955

CZE

EGY

HUN

IRN

IRQ

PAK

POL

ROM

RUS

SAU SYR

TUR

UKG

−
3

3
M

ax
 P

ar
tn

er
 Id

ea
l P

oi
nt

−3 3
Min Partner Ideal Point

Chyzh & Kaiser (ISU) Introducing LSGM November 17 12 / 28



Alliances: 1955

CZE

EGY

HUN

IRN

IRQ

PAK

POL

ROM

RUS

SAU SYR

TUR

UKG

−
3

3
M

ax
 P

ar
tn

er
 Id

ea
l P

oi
nt

−3 3
Min Partner Ideal Point

◮ RUS–POL–HUN–ROM–CZE bloc is much more ideationally cohesive
than UKG–TUR–PAK–IRN–IRQ.
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◮ Two blocs are located roughly in opposite parts of the ideational
spectrum—polarization, ”birds-of-a-feather” theory?
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◮ RUS–POL–HUN–ROM–CZE bloc is much more ideationally cohesive
than UKG–TUR–PAK–IRN–IRQ.

◮ Two blocs are located roughly in opposite parts of the ideational
spectrum—polarization, ”birds-of-a-feather” theory?

◮ Alliances tend to form among ideationally similar states—ideological
bandwagoning?
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The Estimator

◮ Estimate a model of edges that form in response to other edges;

◮ Use a local structure graph model (LSGM) (Casleton, Nordman,
Kaiser 2016, Besag 1974);

◮ Treat edges as observations and model local dependence in edge
formation by specifying a source of connectivity:
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The Estimator: Set-up

◮ Suppose i is an potential edge in a network of potential edges
(realized and unrealized),
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◮ Suppose i is an potential edge in a network of potential edges
(realized and unrealized),

◮ Then si = (ui , vi ) is i ’s location in Cartesian space.

◮ Denote the binary random variable, y(si ) = yi , so that:

yi =

{

1 if an edge is realized
0 otherwise

◮ Define i ’s neighbors as Ni = {sj : sj is a neighbor of si}.

◮ Make a Markov assumption of conditional spatial independence:

f (y(si )|y(sj) : sj 6= si ) = f (y(si )|y(Ni ))

◮ If connectivities between edges are continuous, then the Markov
assumption is redundant.
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The Binary Conditional Distribution

P(Yi = yi |yyy(Ni )) = exp [Ai (yyy(Ni ))yi − Bi (yyy(Ni ))] , (1)

where Ai is a natural parameter function and
Bi = log[1 + exp(Ai (y(Ni )))], and y (Ni ) is a vector of values of the binary
random variables (edges) of i ’s neighbors.
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Ai (y(Ni )) = log

(

κi

1− κi

)

+ η
∑

j∈Ni

wij(yj − κj), (2)

where log
(

κi

1−κi

)

= XXXT
i βββ, Xi is a column vector of k exogenous

covariates, βββ is a k by 1 vector of estimation parameters, wij is the ij th

element of a matrix of connectivities among edges W, and η is its
parameter.
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covariates, βββ is a k by 1 vector of estimation parameters, wij is the ij th

element of a matrix of connectivities among edges W, and η is its
parameter.

◮ When yj > κj , then the dependence term makes a positive
contribution to Ai (y(Ni ))—complementary processes;

◮ When yj < κj , then the dependence term makes a negative
contribution to Ai (y(Ni ))—substitution-type processes;

◮ Key condition: wij = wji .

◮ Model does not require (prohibits) row-standardization of w.
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Estimation

logPL =
∑

i

{yi log(pi ) + (1− yi ) log(1− pi ))}, (3)

where:

pi =
exp[Ai (y(Ni ))]

1 + exp[Ai (y(Ni ))]
(4)
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Monte Carlo Simulations

◮ Generate a list of i = 1, 2, . . . , 100 units with characteristics captured
by variable x, drawn from a standard normal distribution;

◮ Convert to dyadic data (n = c(100, 2) = 4950);

◮ To generate a meaningful dependence matrix, W100x100, we placed
each unit on an evenly spaced ten-by-ten grid and calculated the
Euclidean distance between the two units in each dyad.

◮ Use a Gibbs sampler to generate random variable, Y :
1 Use a vector yyy0={y01, y02, . . . , y0n} drawn from a binomial distribution

as starting values.
2 Simulate y11 = f (y |y02, y03 . . . , y0n).
3 Simulate y12 = f (y |y11, y02, y03, . . . , y0n).
4 Simulate y13 = f (y |y11, y12, y03, y04, . . . , y0n).
5 Continue until simulate a complete network y1, then iterate steps

(2)-(5) using yyy1 as starting values;
6 Discard the first 100 networks for burnin; record every 50th network.
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Monte Carlo Results
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Note: Given randomly initialized values for all edges, the Gibbs sampler
was run with a burn-in of 100 complete graph iterations after which
sample graphs were retained from 100,000 subsequent rounds with 50

iterations for thinning. True parameter values are denoted by vertical lines.
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Empirical Application 1: International Alliance Network

◮ Ideological Balancing Hypothesis: We should observe alliance
formation in different parts of the ideational space—positive
coefficient on the dependence term (Schweller 2004).

◮ Ideational Clustering: We should observe alliance clustering in
ideational space—negative coefficient on the dependence term (Lai
and Reiter 2000).
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Empirical Application 1: International Alliances

◮ Data on international alliances between 1946–2007 (Gibler 2009);

◮ Treat alliances as network edges;

◮ Use ideational distance among alliances as W;

◮ Control for military power ratio, trade, joint democracy.
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International Alliance Network, 1947-2000

Edge Connectivity:

Ideational Distance 0.016∗ (0.001)

Military Power Ratio -2.363∗ (0.073)
Dyadic Trade 0.015∗ (0.005)
Joint Democracy 0.884∗ (0.024)
Constant 0.094 (0.072)

Note: ∗p < 0.05 Standard errors are obtained using
a parametric bootstrap (1100 simulations of complete
networks, 100 burnin and 50 iterations for thinning).
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Empirical Application 2: Senate Cosponsorships

◮ Ideological Balancing Hypothesis: We should observe cosponsorship
clusters in the opposite parts of the ideological space—positive
coefficient on the dependence term.

◮ Ideational Clustering: We should observe consponsorship clustering in
ideational space—negative coefficient on the dependence term.
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Empirical Application 2: Senate Cosponsorships

◮ Data on cosponsorships of labor-related legislation (Senate of the
107th US Congress);

◮ Treat all potential cosponsorships as edges;

◮ Use DWNominate scores (first dimension) to measure ideological
distance in the connectivity matrix W;

◮ Control for same party, labor committee, and minimum seniority.
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Cosponsorships on Labor Bills, Senate of the 107th US

Congress

Edge Connectivity:

Ideological Distance -1.235∗ (0.519)

Same Party 0.704∗ (0.051)
Labor Committee 0.149∗ (0.044)
Minimum Seniority -0.047∗ (0.010)
Constant 0.387∗ (0.089)

Notes: Standard errors were obtained using a parametric
bootstrap via a Gibbs sampler of 300 complete simula-
tions (50 for burnin and thinning.)
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Conclusion

◮ Many political science applications require conceptualizing networks
as dependencies among edges rather than nodes.

◮ Introduce LSGM as a statistical tool for modeling many political
processes involving dependence among network edges;

◮ Applied to modeling formation of international alliance network and
legislative cosponsorships;

◮ Other applications: lobbying groups, parties joining to share ballot
lines, multilateral cooperation (sanctions), diffusion, tipping-point
processes.
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LSGM vs. SAR

◮ SAR: models feedback loops: by construction, Yi is a function of
outcomes in its neighbors, AND the neighbors’ neighbors.

◮ LSGM (CAR): may specify the connectivity matrix or include
additional dependence terms to model the effect of neighbors’
neighbors, but only first-order effects are modeled “by default”;

◮ Besag (1974) demonstrated that CAR may be estimated by
maximizing a pseudo-likelihood—under some conditions results in
substantial gains in speed of estimation.

◮ Standard errors: Gibbs sampler, “Godambe” information matrix.

◮ The trade-off: LSGM (CAR) requires that the connectivity matrix be
symmetric (most applications I’ve seen have a symmetric W matrix);

◮ LSGM naturally extends to other functions in the exponential family,
e.g. Poisson.
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Natural Exponential Family Functions

◮ f (y |θ) = exp[yθ − b(θ) + c(y)], where θ is the natural parameter;

◮ For a binary dependent variable: f (y |p) = py (1− p)(1−y);

◮ Take a natural log and exponentiate:

f (y |p) = exp[y log(p) + (1− y) log(1− p)] =

exp[y{log(p)− log(1− p)}+ log(1− p)] =

exp[yθ − b(θ)],

where θ = log p
1−p

, and b(θ) = log(1 + eθ)
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