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Abstract: 
Despite duration models’ use in political science, no best practice exists for substantively interpreting 
their results.  Many practitioners simply stop after interpreting the model’s estimated coefficients.  When 
substantive interpretation does happen, practitioners use a variety of strategies.  Interpreting the hazard 
rate is among the more prevalent strategies, particularly for Cox models.  Yet, hazards are not intuitive 
quantities with an easily interpretable meaning for many.  We offer a new interpretation technique that 
removes the need to directly interpret hazards: transition probabilities, which are a more intuitive quantity 
for readers to engage with, in general.  We show how to compute transition probabilities via simulation 
for non-parametric, semi-parametric, and parametric duration models in Stata and R.  Further, we also 
discuss how our interpretation strategy has useful implications for binary time-series-cross-section 
analyses.  We use applications from judicial politics and interstate conflict to demonstrate our points.   

                                                        
* The authors’ names appear in reverse alphabetical order. Paper prepared for presentation at the International 
Methods Colloquium (IMC). Draft, please do not circulate without the authors’ permission. 
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What factors increase or decrease the probability that an event occurs?  The question is a familiar 

one in political science.  Wars, votes, reelection, policy adoption, democratic reversals, and treaty 

formation are some of the many events whose occurrence we have an interest in understanding.  Yet for 

many of the events we study, it is reasonable to suspect that a subject’s likelihood of experiencing the 

event is, at least in part, dependent upon how long the subject has been at risk.  This suggests that events 

exhibit duration dependence: the probability of an event occurring in time period j *depends on* t, the 

amount of time elapsed since the subject could first experience the event.  The duration dependence also 

suggests that for any question where we ask whether an event occurs, we can also ask when it occurs.   

Duration models are a natural choice for modeling questions about when an event happens (Box-

Steffensmeier and Jones 2004).  They allow researchers to model the likelihood of an event occurring 

with a built-in ability to account for duration dependence, making it easy to evaluate when-related claims.  

However, no best practice exists for substantively interpreting duration model output.  Many practitioners 

simply stop after interpreting the model’s estimated coefficients, even though the estimates themselves 

are not directly interpretable.  When substantive interpretation does happen, practitioners use a variety of 

strategies, such as expected durations, median durations, marginal effects, first differences, hazard 

ratios/rates, survival curves, cumulative hazards, or percentage changes in the hazard rate.  Interpreting 

the hazard rate is among the more prevalent methods, and yet, hazards are not intuitive quantities with an 

easily interpretable meaning for many.  As a consequence, many scholars tend to eschew duration models, 

opting for other models with both (a) more interpretable post-estimation quantities and (b) the capability 

to correct for duration dependence.1  

We introduce a new, easy-to-understand quantity for interpreting duration models: transition 

probabilities.  Transition probabilities are akin to logit/probit’s predicted probabilities, and can be 

generated from non-parametric, semi-parametric, or parametric duration models.  They permit researchers 

                                                        
1 One prominent example is a logit/probit model with a covariate (or set of covariates) to account for duration 

dependence (e.g., splines, time polynomials [Beck, Katz, and Tucker 1998; Carter and Signorino 2010]).  Scholars 

then generate predicted probabilities to interpret the logit/probit’s results. 
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to make statements about the probability of a subject failing by time t, given some set of starting 

conditions (usually, that the subject just became at risk—t = 0).  Conceptually, transition probabilities 

divide a process of interest into discrete stages, and provide the probability that a subject will be in one 

stage or any number of others.  For instance, a country may be either democratic or autocratic, and 

transition probabilities provide an estimate of the likelihood a country occupies each of those stages. 

We advocate transition probabilities’ use because probabilities are far more intuitive quantities 

for readers to engage with than the current alternatives in the duration model literature.  This is true 

particularly for hazards, which we repurpose and use to calculate transition probabilities.  Confidence 

intervals are also easy to calculate, as we compute transition probabilities via simulation.  Ultimately, 

transition probabilities help researchers to make their duration model’s results more accessible to readers 

(King, Tomz, and Wittenberg 2000).  We show how transition probabilities can simulated using an 

existing package in R (mstate) for non-parametric and semi-parametric models, or using a new package 

of our own creation in Stata for the same two model variants.2  Our interpretation strategy should be of 

interest to frequent duration model users. 

Our second claim is a powerful implication of our first.  We focus on semi-parametric duration 

models in particular.  We argue that researchers working with binary time-series-cross-sectional (BTSCS) 

data should consider using semi-parametric duration models over logit/probit in certain situations.  We 

offer three principal reasons.  First, semi-parametric models eliminate possible bias from misspecifying 

the event’s baseline hazard, which denotes the underlying risk of the event’s occurrence over time.  

Misspecification can arise in logit/probit because L/P’s duration dependence correction (e.g., splines) 

explicitly parameterizes the baseline hazard, giving it a functional form.  Misspecifying the baseline 

hazard’s functional form can lead to inefficient estimates at best, and biased estimates at worst (Box-

Steffensmeier and Jones 2004, 21–22).  By contrast, semi-parametric duration models make no 

                                                        
2 For a Stata package capable of estimating transition probabilities from parametric models, see Crowther and 

Lambert (forthcoming). 
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assumption about the baseline hazard’s functional form, eliminating one possible source of specification 

bias.  

Second, semi-parametric duration models force scholars to be more cognizant of the proportional 

hazards (PH) assumption.  PH says any covariate’s effect on the risk of an event occurring is proportional 

over time.  If the PH assumption is met, for an event five times more likely to happen when x = 1 vs. x = 0 

at time 1, the event will also be five times more likely to happen when x = 1 vs. x = 0 at every other time 

point.  PH is discussed extensively and often in the semi-parametric duration model literature, particularly 

how to detect PH violations and correct for them.  Yet, logit models also assume covariate effects are 

constant over time—that is, they make a PH assumption, too.3  Importantly, this suggests that, if left 

unmodeled, BTSCS logit and probit models may suffer from misspecification and omitted variable bias, 

resulting in biased coefficient estimates.   

Finally, semi-parametric duration models are a powerful gateway to modeling more complex 

processes.  Political processes are often characterized by considerable complexity in the timing and order 

in which events occur, presenting difficulties for the structure of datasets and appropriate methods of 

analysis.  McGrath (2015) outlines a common example: many studies’ datasets fail to differentiate 

between the onset of an event and the duration of an event, either simply coding both as 1 or coding 

ongoing years as 0.  Either of these potential solutions presents challenges to inference, and can mask 

important substantive results stemming from different covariate effects on each distinct outcome.  In the 

context of logit/probit models, adequately modeling onset vs. duration while simultaneously accounting 

for different covariate effects is quite laborious.  Semi-parametric duration models, in contrast, can 

readily accommodate this and more complex situations. 

The paper proceeds in five parts.  First, we review current interpretation strategies for duration 

models, pointing out their strengths and weaknesses.  Second, we elucidate our proposed interpretation 

technique, transition probabilities—specifically, how they derive from a duration modeling framework.  

                                                        
3 Carter and Signorino (2010) make the same point. 
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Third, we discuss how using transition probabilities in BTSCS analyses can improve our substantive 

interpretation of duration models, while also avoiding some of the pitfalls associated with logit/probit 

BTSCS models.  Fourth, we provide two example applications, both of which were originally estimated 

using logit models with BTSCS data.  Our fifth and final section concludes. 

 

I.  Current Interpretation Techniques 

To start, we assume the reader has basic familiarity with duration models, which are concerned 

with lengths of time as dependent variable.4  From that familiarity, we highlight two things that can affect 

which current interpretation strategies are applicable.  First, duration models can be non-parametric, semi-

parametric, or parametric.  Second, a duration model’s estimates may be reported in one of two metrics: 

accelerated failure time (speaking to t’s length) or proportional hazards (speaking to t’s terminating 

event).     

All duration models are non-linear in parameters.  As such, we cannot directly interpret the 

magnitude of any β’s in our model.  We are forced to generate additional quantities to present our model’s 

results concretely (King, Tomz, and Wittenberg 2000).  We loosely group extant approaches to 

interpretation along two major dimensions, each with two categories: the quantity of interest, and whether 

the quantity is an absolute level or a difference of some kind.  The result is four different groupings: 

TABLE 1.  Current Approaches to Interpretation 
  Absolute 

(Levels) 
Relative 

(Difference) 

Q
ua

nt
ity

 t 
Mean or median 

duration 
[E(t) or Q50(t)] 

Marginal effect/ 
first difference 

[∂t/∂x, ΔE(t) 
or ΔQ50(t)] 

hazard Hazard rate 
[h(t)] 

Hazard ratio/ 
% change  

in hazard rate 
[exp(βPH), %Δh(t)] 

    
                                                        
4 For a refresher, see our own Appendix B for a brief overview, and Box-Steffensmeier and Jones (2004) for a more 

thorough treatment. 
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In general, it is good practice to generate quantities that align with the research 

question/hypothesis’ framing, as others have discussed at length.  For instances where duration models 

are appropriate, two possibilities exist.  If the stated research question is about durations—e.g., how long 

do democratic regimes endure—then quantities related to durations are more appropriate.  If the research 

question is about the duration-terminating event—under what conditions do democratic regimes 

backslide—hazards are more appropriate.  Methodologically speaking, there is no right or wrong answer.  

We bracket this reason in our subsequent discussion, to more squarely place the focus on what each 

interpretation technique does well or poorly.   

Our theme throughout is that predicted durations are far easier to interpret than predicted hazards.  

However, some duration models cannot generate predicted durations easily, making hazard-based 

interpretations the only option.  Hazards have few, if any, quantities that are easy to interpret.  Our 

proposed interpretation technique fills this specific need by using hazards to generate transition 

probabilities. 

 

1.  EXPECTED DURATION/MEDIAN DURATION 

 One way to interpret duration models is to predict t from its estimates, akin to how we can predict 

y from OLS models.  In OLS, we take expectations to yield: 

! " # = % + '()( + '*)* 

which is what we usually call “predicted y” " . 

Duration models are more complicated, because some of the parametric models’ underlying 

distributions are not symmetric.  The Weibull parametric duration model is one example.  Because of the 

non-symmetry, two quantities may be of interest to us: the mean duration time (via expectations) and the 

median duration time.  The expression for each quantity varies depending on the baseline hazard’s 

functional form (for formulas, see Box-Steffensmeier and Jones 2004, chap. 3).   

 This interpretation technique works well for any parametric duration model, regardless of metric.  

Deriving the mean and median t for semi-parametric Cox models is more difficult, because both formulae 
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involve an assumption about the baseline hazard’s functional form.  The Cox’s defining feature is that it 

does not assume anything about the baseline hazard’s functional form.  Kropko and Harden (2015) 

provide a technique for recovering expected durations from a Cox model, by using a generalized additive 

model (GAM) to regress the Cox’s predicted exp	('01
2#) against t, the observed duration.  For non-

parametric models, the mean and median are also derivable expressions by way the Kaplan-Meier 

estimate of S(t) (see Klein and Moeschberger 2003, 32–33). 

 For mean or median durations to be useful, however, the quantities must be calculated for 

different x values, since our hypotheses pertain to how t responds to changes in x.  Plotting the 

mean/median duration graphically for different x values, along with each quantity’s corresponding 

confidence interval, allows us to say whether the mean/median duration for one x value is statistically 

distinguishable from the mean/median duration for another x value, based on whether the confidence 

intervals overlap.5  Graphing the quantities of interest and checking confidence interval overlap is 

arguably the most popular way of presenting and interpreting predicted probabilities from logit/probit.     

 

2.  MARGINAL EFFECTS/FIRST DIFFERENCES 

 We can also calculate the effect of a change in x on the expected duration, if we so desire.6  It is 

akin to interpreting β in OLS, because OLS β estimates are equivalent to marginal effects.  If x is 

continuous, we can take the partial derivative of E(t|X) with respect to x, yielding x’s marginal effect.  

Marginal effects tell us how much E(t|X) changes for an infinitesimally small increase in x’s value from a 

(0, or 1, 2…).  If x is non-continuous, we can take the discrete first-difference.  The first difference would 

tell us how much E(t|X) changes for a one-unit increase in x from some value.  First differences are also 

perfectly acceptable for a continuous x.  Licht (2011, 230) nicely summarizes the differences between 

                                                        
5 For the dangers of making multiple comparisons like this, and how to adjust for these dangers, see Esarey and 

Sumner (2016). 
6 If we wanted, we could also calculate x’s marginal effect on the median duration, instead of E(t|X) (Box-

Steffensmeier and Jones 2004, 31). 
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marginal effects and first differences, in the context of interpreting interaction effects in duration models.  

Her summary generalizes to models without interaction terms. 

 In practice, we prefer calculating first differences, regardless of whether x is continuous or not.  

We find it easier to speak of specific changes in x’s value, instead of a nebulous “infinitesimally small 

increase,” and how those specific changes correspond to changes in the mean duration.  Further, when we 

look at graphs of predicted quantities from different covariate profiles (like the previous subsection) and 

check for overlapping confidence intervals, we are in fact visually checking the discrete differences (first 

or otherwise), and seeing if the differences are statistically distinguishable from zero.  However, we 

reiterate that both marginal effects and first differences are correct, from a technical perspective. 

 

3.  HAZARD RATE 

In continuous-time duration models, the hazard represents the instantaneous rate at which the 

termination event occurs.  We can interpret x’s effect with respect to the hazard of the event occurring.  

Hazard-related interpretations are common for duration models whose βs come only in a PH metric, with 

Cox models being the canonical example.  The generic form for any hazard is: 

ℎ 5 = ℎ6(5)exp	('01
2#) 1 

The first hazard-related interpretation involves predicting h(t)’s value for a particular covariate 

profile, similar to how we can predict t for some models.  h0(t)’s functional form will vary, depending on 

what type of duration model is estimated.  Our earlier remarks about graphing and confidence intervals in 

the context of mean/median durations also apply here.   

This interpretation technique works well for parametric duration models, because we impose a 

functional form for h0(t).  The technique works less well for Cox models, since we do not impose a 

functional form for h0(t), but it is possible to recover an estimate for h0(t) after estimating the model.  

Some software packages provide a canned procedure for plotting a smoothed estimate of a Cox’s h(t), 

which automatically recovers h0(t) when creating the plot.  In lieu of a canned procedure, the cumulative 



8 
 

hazard, H(t), is an easier quantity to plot for Cox models because it can be estimated from the survivor 

function: H(t) = –ln(S(t)).   

The major drawback for hazard rates is their interpretability.  Hazards, as a predicted quantity, are 

arguably unique to duration models with little analogue elsewhere.7  At best, they represent a conditional 

probability (discrete-time durations): the probability that the duration’s terminating event occurs, given 

that it has not occurred yet.  At worst, they represent an instantaneous risk (continuous-time durations), 

with a similar interpretation as marginal effects: it is the risk of experiencing the duration’s terminating 

event for an infinitesimally small increase in t’s value.  Neither possibility is particularly appealing. 

 

3.5.  CUMULATIVE HAZARD AND SURVIVOR 

 Researchers also use two other absolute quantities to interpret duration models, which are 

particularly prevalent techniques for interpreting semi-parametric models.  The first is H(t), the 

cumulative hazard, which we mentioned above.  H(t)’s slope speaks to the rate at which h(t) changes, and 

can be larger than 1.  H(t) can be useful for comparing various covariate profiles, because H(t) graphs will 

show which covariate profile has the highest risk of the event occurring to date.  However, H(t)’s biggest 

drawback is that its magnitude is not informative on its own (Singer and Willett 2003, 488).  Researchers 

require additional context to get a sense of an event’s probability of occurrence overall.  For instance, a 

cumulative hazard equal to 1.2 for a particular covariate profile tells us nothing.  We would need another 

covariate profile or two, to be able to get a sense of whether this value is large or small by making relative 

comparisons. 

 The second quantity is S(t), the survivor function, defined formally as S(t) = Pr(T ≥ t).  The 

survivor function provides information about how many subjects’ failure times (denoted T in the formula) 

are above a specific time (usually denoted t).  For instance, if we had five subjects who each failed at t = 

                                                        
7 The notable exception is sample selection models.  The selection equation generates the inverse of Mills’ ratio 

(IMR), which is then included as a regressor in the outcome equation.  The IMR is, in fact, a hazard (Heckman 

1979). 
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1, 2, 7, 8, and 10, S(t = 5) = 0.6, since three subjects have failure times larger than 5.  We do like the 

survivor function, because it is a close relative of transition probabilities, the technique we advocate.  

There are highly specific situations where our transition probabilities will actually equal F(t) = 1 – S(t).8  

However, S(t) (or F(t)) is less useful for interpreting more complex duration models, such as competing 

risks and repeated events.  Transition probabilities give practitioners more flexibility to interpret these and 

other possible simulation scenarios (for example, seeing how long until a subject fails if it was still alive 

at t = 10), generalize to all possible transition structures (e.g., competing risks, repeated events), and also 

generalize to all duration model types.  In addition, we also rarely report confidence intervals around 

S(t)—or any other post-estimation duration model quantity, for that matter.  Confidence intervals are 

simply not the current prevalent norm, and yet, our ultimate interest in making inferences suggests it 

should be.  By contrast, we can easily obtain confidence intervals around transition probabilities, since we 

compute the probabilities via simulation. 

 

4.  HAZARD RATIO, PERCENT CHANGE IN HAZARD RATE 

For relative comparisons using the hazard, one option is the hazard ratio, also sometimes called 

the risk ratio or relative risk (Box-Steffensmeier and Jones 2004, 50; Mills 2011, 94).  The hazard ratio is 

equal to exp(βPH), and it describes “the effect of a one-unit difference in the associated predictor on 

the…hazard” (Singer and Willett 2003, 524).  It is a ratio because it compares h(t) from one covariate 

profile (x(1) = 0, say) to h(t) from another covariate profile (x(2) = 1), and expresses how to obtain h(t|x(2)) 

as a multiple of h(t|x(1)).  Or, more plainly: if covariate profile x(1)’s hazard value represents an image, 

exp(βPH) represents how much you would have to shrink or enlarge that image to obtain covariate profile 

                                                        
8 The two will be equal for a classic duration transition structure—all subjects start in stage 1, two possible stages, 

and the only transition possible is 1→2—when the transition probability interval begins at s = 0.  In a similar vein, 

our transition probabilities will equal the cumulative incidence function (CIF) in a classic competing risks 

situation—all subjects begin in stage 1, there are any number of additional stages, and the only possible transitions 

are out of stage 1—again when the transition probability interval begins at s = 0 (Putter, Fiocco, and Geskus 2007, 

2424). 
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x(2)’s hazard.  This is evident from inserting x(1) = 0 and x(2) = 1 as arbitrary values into equation 1 and 

simplifying terms:  

ℎ 5|)(() = ℎ6(5)exp('01)(()) ℎ 5|)(*) = ℎ6(5)exp('01)(*)) 2 

ℎ 5|)(*)
ℎ 5|)(()

=
exp '01)(*)
exp '01)(()

 

ℎ 5|) = 1

ℎ 5|) = 0
= exp '01 1 − 0  

ℎ 5|) = 1 = exp('01)ℎ 5|) = 0  

 

This interpretation technique is appealing for Cox models, because the baseline hazard terms 

cancel out in the ratio, eliminating the complications arising from h0(t) in a semi-parametric expression.  

Because of the exponentiation, we are interested in seeing whether exp(βPH) is statistically different from 1 

for hypothesis testing purposes, since exp(0) = 1.  A hazard ratio greater than 1 means that a (x(2) – x(1))-

unit change from x(1) produces a higher hazard rate.  A hazard ratio less than 1 means that a (x(2) – x(1))-

unit change from x(1) produces a lower hazard rate.  The hazard ratio’s major disadvantage is yet again its 

interpretability.  Hazard ratios are not particularly intuitive quantities, perhaps because they refer to the 

hazard’s scale across two different covariate profiles.  This is especially true for audiences not already 

familiar with hazards, as we have already mentioned. 

Finally, we can compute x’s effect on h(t) via the marginal effect or first difference.  The 

generalities of our marginal effects/first difference discussion, when t was the quantity of interest, also 

apply here.  For h(t), the percent change in the hazard’s value is equivalent to the first difference.  To 

calculate how some change in x’s value affects h(t) in terms of percent change, the formula is (Box-

Steffensmeier and Jones 2004, 60; Mills 2011, 95):  

%Δℎ 5|# =
exp '01)(*) − exp '01)(()

exp '01)(()
∗ 100 

%Δℎ 5|# = exp '01 )(*) − )(() − 1 ∗ 100 

3 

where x(1) and x(2) denote the x values of interest.  Earlier, we used x(1) = 1 and x(2) = 0. 
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Box-Steffensmeier and Jones (2004, 60) showcase %Δℎ 5|#  as a preferred way for interpreting 

Cox models, for logical reasons.  First, Cox model estimates can only be expressed in PH, as we 

mentioned earlier.  Percent changes are marginally more intuitive than hazard ratios, if only because the 

same type of percentage calculations appear with much greater frequency in many econometric and non-

econometric contexts.  In addition to the above, either knowingly or unknowingly, practitioners usually 

compute %Δℎ 5|#  to make meaningful sense of the hazard ratio for one-unit increases in x.  For 

instance, if x’s hazard ratio (exp(βPH)) is equal to 0.6, it can be equivalently expressed as 0.6 = exp(βPH*[1 

– 0]), which is the entire first term in equation 3’s formula.  Plugging in 0.6 and finishing the calculation 

shows a one-unit increase in x produces a 40% reduction in the event’s hazard, as 0.6 – 1 = -0.4.   

%Δℎ 5|#  does nevertheless have limitations, aside from h(t)’s interpretability.  In particular, as 

with any method focusing on percent changes in y’s value, the quantity may be misleading for relatively 

infrequent events.  For instance, it may be that increasing x’s value produces a 100% increase in the 

hazard rate.  However, in substantive terms, this may be a very small change in the likelihood of an event 

actually occurring.  A 100% increase the hazard could come about if h(t) increased in value from 0.4 to 

0.8 (fairly frequent event), but it could also come about if the hazard increased from 0.00001 to 0.00002 

(very infrequent event).  We simply cannot tell from percentage changes alone. 

To succinctly summarize our discussion: predicted durations (mean or median) are typically 

easiest for readers to grasp with minimal effort.  These can be generated from any parametric duration 

model.  Semi-parametric models have difficulties generating predicted durations, because the formulae 

require h0(t) to be parameterized.  Notably, this includes the Cox model, the workhorse of semi-

parametric duration models.  Predicted hazards are the only alternative, but hazards are not particularly 

intuitive quantities to understand and interpret, regardless of a practitioner’s adeptness with duration 

models.  Relative measures of comparison involving h(t) exacerbate the situation, since their calculation 

involves taking an already hard-to-interpret quantity and transforming it further.  
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II.  Proposed Technique: Transition Probabilities 

A.  Origin and Formulae 

 Our transition probabilities address the need for easier-to-understand interpretation techniques for 

hazard-based quantities, which has powerful implications for semi-parametric Cox models.  The idea of 

obtaining transition probabilities from a duration model has its firmest roots in the multi-state duration 

model literature, but is generalizable to all duration models.  Usually, multi-state duration models are Cox 

models estimated with unique baseline hazards and unique covariate effects for every event within a 

process (see Metzger and Jones 2016 for an overview).9  However, multi-state duration models can also 

be estimated parametrically or non-parametrically, meaning transition probabilities can also be calculated 

using any of the three duration model variants. 

Multi-state duration models begin by recognizing we can view any process as being composed of 

a number of stages.  Each stage is defined based on the event(s) subjects are at risk of experiencing—

“risk sets,” in duration parlance.  Simple duration models have two stages: (1) at risk of failing, which all 

subjects occupy to begin, and (2) failed, once subjects experience a failure event.  A subject experiencing 

the event moves from one stage to another.  We use the word “transitions” to denote this movement 

between stages, with its directed from-to pairings.  The emphasis on stages opens up a new way of 

conceptualizing the output from duration models.  Instead of thinking purely about when a subject 

experiences a transition, we can ask which stage a subject occupies at a given point in time.  Answering a 

“which?” question requires information about whether a transition event occurred and when it occurred, 

but goes one step further by speaking to which risk set a subject likely occupies by t. 

Defining transition probabilities begins with a familiar quantity: the hazard, often called a 

“transition intensity” in the multi-state literature and denoted α(t) instead of h(t).  We use a as a generic 

identifier for a subject’s current stage (“from”), and b as the generic identifier for a subject’s next 

potential stage (“to”).  If we add transition-specific notation to the generic expression for a hazard, we 

                                                        
9 If needed, we can constrain different combinations of baseline hazards and/or the covariates’ coefficients to be 

equal. 
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obtain the instantaneous risk of transitioning from Stage a to Stage b at time t (Wreede, Fiocco, and Putter 

2010, 262): 

ℎ>→@ 5 ≡ %>→@ 5 = lim
EF→6

Pr	(I 5 + Δ5 = J|I 5 = K)

Δ5
 4 

where Z(t) denotes the random process determining the stage’s value in t (Stage a, Stage b, etc.).   

Our earlier discussion of hazards’ strengths and weaknesses, in addition to what we mentioned in 

the last paragraph, makes clear that hazards and probabilities are similar, but not synonyms.  The 

challenge becomes figuring out whether, and how, one of the quantities can be expressed in terms of the 

other, in such a way to yield transition probabilities.  Gill and Johansen (1990, 1532–1534) make the key 

connection in their work on product integrals.  They recognize that the cumulative hazard function10 and 

the survivor function belong to a family of interval functions with well-known properties, drawing on the 

counting process literature.  Gill and Johansen use these properties to map the cumulative hazard onto the 

survivor, and subsequently show that this relation generalizes to more complex settings, where we have a 

process composed of many transitions, not just one (see also Aalen, Borgan, and Gjessing 2008, 

Appendix A; Andersen et al. 1993, 88–95).  As a consequence, we can aggregate every transition’s 

cumulative hazard into an S x S matrix, H(t) (in the multi-state literature, A(t)), where S is the number of 

stages within the process.  After forming H(t) and applying Gill and Johansen’s basic results, we obtain: 

L M, 5 = O + ΔP(Q)
R∈(T,F]

 5 

where u denotes all times at which we observe any transition within some time interval with start point s 

and end point t.  The resultant quantities are now best described as transition probabilities from a 

Markovian process, contained in the P(s,t) matrix.  The matrix’s quantities represent the probability of 

transitioning from each stage to every other stage within the time interval11 (s,t].  For example, element 

                                                        
10 The cumulative hazard function, H(t), simply sums the hazard’s value at every time point from 0 through t.  In a 

non-parametric setting, it is equivalent to the Nelson-Aalen estimator. 
11 The “within the time interval” in the interpretation stems from the order in which each O + ΔP(Q) term is 

multiplied together by the product integral. 
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P2,1(s,t) would denote the probability of a subject transitioning from Stage 2 to Stage 1within the time 

period between s and t.  Metzger and Jones (2016, Appendix A) walk through a transition probability 

matrix calculation using a simple competing risks process.   

 As we mentioned above, equation 5 is contingent on the process having transition-specific 

hazards that are Markovian: a subject’s next stage is conditional only on the subject’s current stage.  

Whether this is true can be checked via transition-specific hazards.  Markovian transition-specific hazards 

have values that do “not depend on any other aspect of the history, like states visited on the way, and the 

times of previous transitions (except to the extent that this information is reflected by the present state)” 

(Hougaard 2000, 143).  If there are covariates that capture any of this information, the model is semi-

Markovian in nature.  If durations are recorded as gap time, the model is also semi-Markovian, since t is 

resetting *any* time a transition occurs, implying that t tells us something about the transition history.  

Transition probabilities must be simulated for semi-Markov models, instead of derived analytically. 

 

B.  Generating in R/Stata 

 We elect to compute all our transition probabilities via simulation, for a few reasons.  First, 

simulations can handle non-, semi-, and parametric duration models.  Analytic expressions tend to be 

more rigid in their formulation, specific to a particular distribution or broader class of models.  Second, 

our simulations do not make a Markov assumption about stages to estimate, whereas analytic expressions 

do.  Third, our simulation setup is flexible and can accommodate a variety of risk set configurations.  This 

includes, but is not limited to, situations with recursive, repeated, competing, and/or sequential events.  

Analytic expressions have difficulty handling some of these alternatives, particularly recursive situations 

in which subjects can experience an event, and then once they experience a second event, become at risk 

of experiencing the first again.  To get the transition probability analytically, researchers must be able to 

express every possible transition sequence a subject can take—a difficult proposition with recursiveness.  

Finally, a simulation approach makes generating confidence intervals quite simple, whereas analytic 

derivations are often quite complex. 
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 Wreede, Fiocco, and Putter’s (2011) mstate package in R can calculate both analytic and 

simulated transition probabilities.  The simulations are configured as a series of nested risk experiments.  

Our Stata package uses simulations exclusively, following the same setup as Wreede, Fiocco, and Putter 

(2011), which itself makes use of Dabrowska (1995).  Beyersmann, Allignol, and Schumacher (2011) also 

use the same setup to structure their book.12   

 

III.  Implications: Modeling with BTSCS Data 

A.  Current Approaches to BTSCS 

 Beck, Katz, and Tucker’s (1998, hereafter “BKT”) article on BTSCS data lays out the situation 

well.  A sizable swath of political science research is concerned with whether or not an event occurs, 

making the dependent variable binary.  We have time-series cross-sectional data on multiple panels, with 

each subject i’s panel composed of observations from multiple points in time (j, to denote calendar 

year/time).  Data of this form are binary time-series cross-sectional data (BTSCS).  They are a form of 

grouped duration data.  Logit and probit (hereafter, L/P) models are the current standard tools for 

evaluating hypotheses about an event’s occurrence.  We typically generate predicted probabilities to 

interpret our L/P model results. 

For many of the events we study, it is reasonable to suspect that temporal dependence exists: 

whether the subject experiences the event in the current time period j is dependent upon how long the 

subject has been at risk of experiencing the event.  This length of time is t, our duration.13  However, by 

default, L/P both assume temporal independence.14  No covariate captures t’s effect on the probability of 

the event occurring in j.  BKT (1998) point out the importance of accounting for temporal dependence 

because failing to do so amounts to assuming an incorrect functional form for the baseline hazard.  A 
                                                        
12 We give a broad outline of the procedure in Appendix C. 
13 t is more properly expressed as tij in a BTSCS context, as the variable’s value is specific to a subject (i) at one 

point in (calendar) time (j).  We omit the subscripts to streamline our presentation. 
14 The exponential parametric duration model is the equivalent for continuous-time data, as both the exponential and 

L/P assume a flat baseline hazard. 
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wrong h0(t) functional form in BTSCS has the same ramifications as it does for parametric duration 

models: inefficient estimates at best, biased estimates at worst (BKT 1998, 1261; Box-Steffensmeier and 

Jones 2004, 21).   

BKT suggest correcting for temporal dependence by including either t dummies15 or some 

function of time (e.g., splines) as regressors.  Time dummies are plagued by estimate inefficiency and 

potential separation problems when estimated parametrically (Carter and Signorino 2010, 275), making 

some function of time the more appealing option for many applications.  Cubic polynomials (t, t2, and t3) 

are the current (albeit contested, by some (Beck 2010)) incumbent correction, because of how easy they 

are to generate and their flexibility in capturing many different forms of temporal dependence (Carter and 

Signorino 2010).  BKT (1998, Appendix A) show that a continuous-time Cox model is identical to a 

BTSCS complementary log-log (cloglog) model with time dummies.17  The βs returned by both models 

are mathematically equivalent.  The larger implication of this is that Cox models can be used in lieu of 

L/P for modeling BTSCS data, since cloglog and L/P are both binary outcome models.  Computing 

transition probabilities from our Cox model gives us familiar predicted quantities in the BTSCS setting, 

eliminating “difficult interpretation” as a reason for choosing L/P over Cox.   

 

B.  Limitations of Logit/Probit for Modeling BTSCS Data  

 At minimum, there are three possible advantages to using a Cox model for analyzing BTSCS 

data.  First, and most important in the majority of applied work, is the assumption regarding proportional 

hazards.  While this assumption is most closely associated with the Cox model, it nevertheless is an 

assumption made by logit/probit models for BTSCS data.  Consequently, much as is the case with Cox 

models, it is necessary to test for violations of this assumption in logit/probit models for BTSCS data, a 

point that Carter and Signorino (2010, 289) readily make.   

                                                        
15 Time dummies are dichotomous variables for every t we observe.  The dummies serve as fixed effects, permitting 

each t to have a unique intercept—i.e., baseline hazard. 
17 We show the derivation in Appendix A. 
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However, in practice, testing for violations of this assumption in a logit/probit framework is 

cumbersome.  The test requires estimating a series of likelihood ratio tests involving the core restricted 

model and an unrestricted model that includes an interaction between the time polynomials and a 

covariate, for every covariate in the model (Carter and Signorino 2010, 289).  As a result, in many applied 

settings, practitioners will not follow Carter and Signorino’s (2010) advice and will not test for PH 

violations in a logit model.  The result of a PH violation in logit is the same as it would be in a Cox 

model—misspecification and potentially erroneous, or limited inferences.  By contrast, testing for PH 

violations after a Cox model is trivial, as canned routines exist in standard software packages employed 

by political scientists. 

 Second, using semi-parametric models removes a possible source of bias stemming from 

misspecifying the baseline hazard.  Misspecification can arise in L/P because in order to model the 

baseline hazard, L/P explicitly parameterize the baseline hazard, often using a cubic polynomial.18  Such 

misspecification can potentially lead to either inefficient or biased estimates parameter estimates (Box-

Steffensmeier and Jones 2004, 21–22).  Moreover, how the baseline hazard is modeled in L/P, can have a 

significant impact on the subsequent ability to properly interpret the hazard.  In contrast, the use of a Cox 

model avoids these issues altogether. 

Finally, Cox models can easily handle causally complex processes.  Jones and Branton (2005) 

emphasize the similarity between BTSCS setups and Cox models, noting the Cox model’s ability to 

handle additional process structures that L/P cannot—namely, competing and repeated events.  Metzger 

and Jones (2016) extend Jones and Branton’s list, showing that Cox models can also handle additional 

process structures when formulated as a multi-state model, such as recursiveness and sequential events.  

Metzger and Jones (2016) subsequently show the importance of modeling all the process’ stages, to 

protect against inaccurate and misleading inferences about x’s effect.  In short, using Cox models in a 

                                                        
18 Automated smoothing splines avoid some of these issues, though in practice they may prove challenging to 

implement given the range of options available to adjust their fit, and the risk of overfitting as a result. 



18 
 

BTSCS setting can actually give researchers more modeling freedom than L/P currently offers, giving us 

more leverage to test additional implications from our theories. 

  

IV.  Applications 

 We employ two applications below to demonstrate and explore the use of transition probabilities 

in comparison to other means of interpretation.  In the first, we re-examine Hall and Ura’s (2015) study of 

judicial invalidation of major federal laws to demonstrate the advantages of transition probabilities in 

comparison to other post-estimation techniques.  In the second, we re-estimate the ubiquitous model of 

militarized interstate dispute onset (MID) (Oneal and Russett 2005), to show the additional benefits of 

employing Cox models vs. a more standard logit for PH violation tests and modeling causal complexity. 

 

A.  Judicial Review 

 We use Hall and Ura’s (2015) study of US judicial review to demonstrate transition probabilities’ 

use as an alternate means of substantively interpreting Cox models.  Hall and Ura argue the judiciary is 

more likely to invalidate significant legislation if the legislature demonstrates little support for the 

legislation.  To test this claim, Hall and Ura construct a dataset of statutes from 1949-2008.  The unit of 

analysis is the statute-year, and the dependent variable is a dichotomous indicator of whether the Supreme 

Court invalidates the statute in a particular year.  Hall and Ura employ three different independent 

variables, each of which attempts to measure the degree of support for the statute by the current pivotal 

legislator.  Each variable captures the likelihood that the pivotal legislative actor would vote in favor of 

the law, but varies who is defined as being pivotal.  The Floor Median Model focuses on each chamber’s 

median member as well as the president, the Senate Filibuster Model includes filibuster actors, and the 

Party Gatekeeping Model includes the majority party’s median member in both the House and the Senate 

(2015, 823). 

To model the relationship between legislative support for a statute and the likelihood of judicial 

invalidation, Hall and Ura estimate a series of  logit models.  As part of their model specification, they 



19 
 

include a counter of the number of years since a statute was passed, along with cubic polynomials, as 

suggested by Carter and Signorino (2010).  In explaining their modeling strategy, Hall and Ura state, 

correctly we would argue, that their “approach is functionally equivalent to a traditional duration analysis 

and offers clearer interpretation” (2015, 824, emphasis added). 

 

1.  MODEL ESTIMATES AND CONVENTIONAL INTERPRETATION 

Table 2 replicates all three of Hall and Ura’s logit models, and re-estimates each as a Cox model.  

As the coefficient estimates in Table 2 indicate, both the logit and Cox estimation strategies yield similar 

inferences.  Regardless of how legislative support is operationalized, the higher legislative support for a 

particular statute, the less likely it is that the Supreme Court will overturn the statute.  However, focusing 

solely on the coefficient estimates’ sign limits researchers’ ability to substantively interpret their results.  

In the main text of their manuscript, Hall and Ura use predicted probabilities and marginal effects to 

substantively interpret their logit models’ estimates.   

TABLE 2.  Comparison of Logit and Cox Estimates of Judicial Review 
 Floor Median Senate Filibuster Party Gatekeeping 
 
 Logit Cox Logit Cox Logit Cox 

Majority Support -1.50** -1.47* -1.14* -1.11† -1.32** -1.28* 
(0.51) (0.66) (0.50) (0.62) (0.49) (0.59) 

Constant -2.59** -- -2.97** -- -2.88** -- 
(0.51)  (0.45)  (0.43)  

Log-Likelihood -272.5 -264.6 -273.7 -265.8 -272.8 -264.9 
† = p ≤ 0.10, * = p ≤ 0.05, ** = p ≤ 0.01, two-tailed tests.  Partial log-likelihood estimates reported for 
Cox models.  Logit models also include a counter for years since a statute passed, along with quadratic 
and cubic terms.  

 
We begin by interpreting Table 2’s Cox model using the current interpretation strategies we 

discussed earlier.  Figure 1(a) compares two survival curves, one depicting the probability a statute will 

stand with high legislative support in the Floor Median Model (solid line), and the other depicting the 

probability it will stand with low legislative support in the Floor Median Model (dotted line).19  

                                                        
19 We focus on the Floor Median Model results, to facilitate a comparison with Hall and Ura’s estimated predicted 

probabilities. 
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Consistent with the Hall and Ura’s estimated predicted probabilities, Figure 1(a) indicates that statutes 

with high legislative support are less likely to be invalidated by the Supreme Court than statutes with low 

levels of legislative support.  Moreover, regardless of the level of legislative support, statutes become 

more likely to be invalidated over time, though this effect slows considerably.  However, our two 

drawbacks to survival curves (or S(t)’s complement, F(t)) are also evident: we can speak only of what 

happens immediately after a law is passed (starting time = 0); and reporting S(t)’s confidence intervals is 

not the current norm, in part because they are hard to calculate in some statistical packages. 

FIGURE 1.  Survival Curves and Cumulative Hazard Estimates of Judicial Invalidation 
(a) Survival Curves (b) Cumulative Hazards 

  
NOTE: High majority support is equal to 1 SD above the mean, and low support is equal to 1 SD below. 
 

Figure 1(b) presents cumulative hazard estimates from the same model, using the same covariate 

profiles as Figure 1(a).  Again, the results’ substantive interpretation leads to the same conclusion as 

Figure 1(a).  Laws with low majority support have a higher risk of being invalidated than laws with a high 

level of support.  However, interpreting cumulative hazard curves also has challenges, especially 

compared to predicted probabilities.  To echo our earlier discussion, notice first how Figure 1(b)’s y-axis 

values are only useful when comparing various covariate profiles, because we can see low majority 

support has the highest cumulative risk of occurring to date.  However, also notice that interpreting H(t) 
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for a single covariate profile means relatively little.  Is a cumulative hazard value of 0.30, for instance, a 

high value, a low value, or something in between? 

Finally, we can use Equation 3 to estimate percent changes in the hazard rate, given change in a 

covariate’s value.  Increasing majority support’s value from the mean to one standard deviation above 

produces a 30% reduction in the hazard that a law will be invalidated.  Conversely, a 1-standard deviation 

reduction from the mean yields a 44% increase in the hazard that a law will be invalidated.  Percent 

changes are useful for providing a basic picture of how changes in majority support impact the risk of a 

law being invalidated, but they provide little sense of the overall risk of invalidation.  That is, a 44% 

increase may be meaningful in some instances, but not in others, depending on the underlying likelihood 

of invalidation. 

  

2.  INTERPRETATION VIA TRANSITION PROBABILITIES 

 We argue that estimating transition probabilities from duration models provides more intuitive 

substantive interpretations than most current post-estimation strategies.  To highlight these features, we 

estimate transition probabilities based on the same model of judicial review discussed above.  

Specifically, we simulate transition probabilities for two situations.  In the first, we specify that the 

starting time is 0 and the starting stage is stage 1, meaning the law has just passed and has not yet been 

invalidated.  In the second, we keep the same starting stage, but specify the starting time as 10, meaning 

the law was passed 10 years ago and has not yet been invalidated.  The current debate about invalidating 

the Affordable Care Act underscores why a scenario with a non-zero starting time might be useful (the 

ACA was enacted in 2010).  As above, we estimate these transition probabilities for two scenarios: one in 

which legislative support for the law is high and one where legislative support is low. 



22 
 

FIGURE 2.  Transition Probabilities of Judicial Review 
(a) Starting time = 0 (b) Starting time = 10 

  
NOTE: Transition probabilities generated with 1000 simulations, n = 295.  Starting stage = law valid (both panels) 
 

Figure 2 plots the simulated transition probabilities.  There are two possible stages in which a law 

may be situated: not yet invalidated and already invalidated.  Importantly, the latter stage is absorbing—

once a law has been invalidated, it is no longer at risk of being invalidated, nor is it at risk of being re-

instated.20  As a consequence, Figure 2’s values reflect the probability that a law has been declared invalid 

by that particular year.  For instance, the transition probability in t = 5, reflects the probability that the law 

was declared invalid in year 5, but also the probability that the law was declared invalid in t = 4, t = 3… 

t = 1.  Notice how the probabilities reflect the overall likelihood that a law has been declared invalid in 

each year, regardless of when it was declared invalid, which is different from the probability of 

invalidation happening in any given year. 

Figure 2 depicts several interesting results that demonstrate transition probabilities’ utility.  First, 

focusing on Figure 2(a), there is a relatively high chance that significant legislation will be invalidated.  

                                                        
20 There is no requirement that such stages be absorbing.  The second application provides an example without an 

absorbing stage. 
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Regardless of the level of legislative support, there is roughly a 20% chance that a major piece of 

legislation will be ruled invalid within 5 years of its passage, and a roughly 40% chance of such a ruling 

within 20 years of its passage.  Starting with the 5th year after passage, laws with low legislative support 

have a significantly higher probability of being invalidated than laws with high legislative support, 

indicated by the non-overlapping confidence intervals.  Focusing only on the probability of invalidation 

happening in any given year—which may be relatively low—risks obscuring these larger points about 

invalidation across time.  Notice also how the figure’s confidence intervals make it easy to evaluate 

whether the two scenarios’ transition probabilities are statistically different from one another. 

Second, and related to the prior point, transition probabilities are in a readily interpretable and 

intuitive scale.  This facilitates comparisons between different values (e.g., is the likelihood of 

invalidation higher when legislative support goes down?), but also absolute inferences.  A 50% chance 

that major legislation will be invalidated within 30 years of its passage clearly indicates preserving major 

legislation is far from guaranteed.   

Third and finally, transition probabilities give us more flexibility to specify additional situations 

of interest.  Figure 2(b) shows that, if a law has been on the books for 10 years, it will have a 6.8% chance 

of being invalidated in the presence of low legislative support at the 20-year mark, whereas it will have a 

3.3% chance of being invalidated in the presence of high legislative support at the 20-year mark.  

However, these differences are not statistically distinguishable from each other, suggesting that if laws 

survive to the 10-year mark, the degree of legislative support has no significant effect on the law being 

invalidated in subsequent years.  These sort of inferences, where our starting time for the simulations is 

not 0, are not possible with our current interpretation strategies. 

  

B.  MIDs 

Our second application regarding MID onset demonstrates the potential advantages of using Cox 

models to deal with problems relating to duration dependence.  In particular, Cox models more readily 

facilitate testing important statistical assumptions about proportional hazards (PH) and modeling causally 
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complex processes.  Our data come from Oneal and Russett (2005), covering 1885-2000 with a dyad-year 

unit of analysis.  In their dataset, the dependent variable is coded 1 for dyad-years in which the two states 

begin a new MID in that year and 0 otherwise.  We end up recoding this dependent variable, for important 

reasons we explain below.  Our dependent variable is coded 1 for any dyad-year in which two states have 

a new or ongoing MID and 0 otherwise.  We use the classic “liberal-realist” specification in our example, 

which are a set of control variables fairly standard across studies of MID onset.   

 

1.  MODEL ESTIMATES AND PH TESTING 

Table 3’s first two columns compare the logit and Cox model estimates for MID onset.  To ensure 

these models are equivalent, we include a variable counting the number of years since the last MID onset, 

along with cubic polynomials, in the logit model.  The two models’ results are largely similar, and 

support most of the established conclusions regarding MID onset determinants.  For instance, both 

models indicate higher levels of economic interdependence reduces the risk of dyadic MID onset, as do 

greater distances between the two states and larger disparities in the two states’ relative capabilities.  

Conversely, being neighbors and having a major power in the dyad both increase the risk of dyadic MID 

onset. 
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TABLE 3.  Comparison of Logit and Cox Estimates of MID Onset 
 
 Logit Cox Cox with PH 

Corrections 

Allies? -0.205* -0.081 -0.261** 
(0.090) (0.062) (0.091) 

Capability Ratio (ln) -0.165 ** -0.200** -0.249** 
(0.031) (0.018) (0.026) 

Economic Interdependence (Low) -18.69** -42.03** -56.04** 
(7.159) (5.69) (8.768) 

Contiguity 2.220** 1.965** 1.897** 
(0.131) (0.066) (0.067) 

Distance (ln) -0.841** -0.415** -0.325** 
(0.059) (0.023) (0.030) 

Major Power Dyad 2.692** 1.984** 1.786** 
(0.113) (0.057) (0.081) 

Democracy (Low)  -0.064** -0.065** -0.056** 
(0.007) (0.005) (0.007) 

Joint IGOs 0.011** 0.021** 0.037** 
(0.002) (0.002) (0.003) 

Allies * ln(Time)   0.103* 
  (0.044) 

Capability Ratio * ln(Time)   0.028* 
  (0.014) 

Econ * ln(Time)   10.79** 
  (3.538) 

Distance * ln(Time)   -0.082** 
  (0.016) 

Major Power Dyad * ln(Time)   0.130** 
  (0.041) 

Democracy * ln(Time)   -0.006† 
  0.0034 

Joint IGOs * ln(Time)   -0.012** 
  (0.001) 

Log-Likelihood (partial) -7851.9 -15779.7 -15708.6 
† = p ≤ 0.10, * = p ≤ 0.05, ** = p ≤ 0.01, two-tailed tests.  Logit model also includes peace 
years and cubic polynomials. 

 
While the estimates from the two models are similar, the Cox specification presents a central 

advantage over the logit model: it allows us to test for PH violations more easily.  As we described 

earlier, a testing procedure for logit exists, but is cumbersome. When we test for PH violations in both the 

Cox and the logit, we find a number of violations.21  Table 3’s third column estimates a Cox model with 

corrections for these PH violations.  This model’s results change the naïve estimates presented in the 
                                                        
21 See Appendix D for the PH test results. 
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previous two columns.  Economic interdependence’s estimate is negative and large, indicating that greater 

levels of economic interdependence greatly reduce the risk of MID onset.  However, economic 

interdependence’s time interaction is positively signed.  The constituent and interaction term together 

indicate that immediately following a MID (t = 0), higher levels of economic interdependence greatly 

reduce the risk of another MID onset.  However, as time passes, this pacifying effect grows smaller and 

smaller.  This is an important scope condition on a core finding in the study of MID onset: greater levels 

of economic interdependence do reduce the risk of MID onset, but this effect is strongest in the immediate 

aftermath of a MID and tends to decline over time.22  The example underscores the substantive 

importance of testing for PH violations in any setting, regardless of estimator. 

 

2.  CAUSAL COMPLEXITY 

An additional advantage of Cox models compared to logit models is their flexibility in modeling 

political processes characterized by causal complexity (Metzger and Jones 2016).  One particular form of 

causal complexity in BTSCS settings relates to properly defining the outcome of interest.  As McGrath 

(2015) describes, many studies’ datasets fail to differentiate between the onset of an event, and the 

subsequent duration of an event.  To provide a concrete example, consider a MID that commences in 

2000 and terminates in 2003.  The incumbent practice among researchers is to code years in which MIDs 

are ongoing as 0.  In this case, 2000 would be coded as 1, and 2001, 2002, and 2003 would be coded as 0.  

By doing so, researchers introduce a situation of heterogeneous 0’s, where 0 may either indicate peace or 

an ongoing conflict.  The complex effect of a particular factor, such as economic interdependence, is lost 

as its effect on conflict—both onset and duration—is simply assumed to be the same.  The same principle 

holds if the dependent variable is coded as 1 in 2000 and each of the intervening years through 2003.  The 

determinants of MID onset may differ from the determinants of MID duration, but by coding 2000-2003 

                                                        
22 Others have worried about economic interdependence, temporal dependence, and how the effect of the former 

might be impacted by the latter.  See, e.g., Oneal and Russett (1999). 
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in the same fashion, we introduce heterogeneity for the 1’s, and different covariate effects for onset vs. 

duration are overlooked (McGrath 2015).   

Cox models’ flexibility affords researchers an elegant solution, one that directly models causal 

complexity while avoiding the pitfalls described by McGrath (2015).  Specifically, an extension of Cox 

models, known as multi-state duration models (Metzger and Jones 2016), allow researchers to 

disaggregate complex political processes into discrete stages, and model the determinants of transitions 

between these stages.  For MIDs, the process can be divided into two stages: peace and an ongoing MID.  

Transitions between these two stages are denoted by the occurrence of one of two events: MID initiation 

and MID termination, respectively.  By disaggregating the MID process into these discrete stages, we can 

then account for causal complexity by using transition-specific covariates, which allow covariate effects 

to vary depending on the transition in question.  Thus, if the same variable of interest exerts a one effect 

on the MID onset but another, different effect on MID termination, multi-state models will detect and 

model the difference. 

Structuring the data to account for a situation with two stages and two possible transitions is 

straightforward.  The dataset requires (1) a stage identifier, recording whether a dyad is currently involved 

in a MID or not, as well as (2) a transition indicator, denoting when transitions between stages occur.  

Here, it amounts to a variable coded 1 for dyad-years in which MID initiation or termination occurs.  We 

can then generate transition-specific covariates, allowing the covariates’ effect to vary across transitions.23  

With this data structure, any standard statistical package can estimate a multi-state model: estimate a Cox 

model, include the transition-specific covariates, and stratify the baseline hazards by stage.24  Finally, 

both R and Stata have post-estimation utilities for calculating transition probabilities from the estimated 

multi-state model (for R: Wreede, Fiocco, and Putter 2010, 2011). 

                                                        
23 For more on generating transition-specific covariates, as well as structuring data for more complex multi-state 

models, see Metzger and Jones (2016). 
24 Stratifying the baseline hazards according to whether a dyad is currently experiencing a MID or not accounts for 

the different underlying rates of MID onset and termination. 
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TABLE 4.  Multi-State Model of MID Onset and Termination 
 
 Peace → MID MID → Peace 

Allies 
-0.290*† 0.185* 
(0.131) (0.076) 

Capability Ratio (ln) 
-0.166** 0.070** 
(0.022) (0.022) 

Economic Interdependence (Low) 
-23.23** 12.62** 
(6.000) (3.42) 

Contiguity 
2.237** -0.024 
(0.145) (0.075) 

Distance (ln) 
-0.296** -0.079* 
(0.047) (0.038) 

Major Power Dyad 
1.589** 0.029 
(0.112) (0.076) 

Democracy (Low) 
-0.046** -0.004 
(0.010) (0.006) 

Joint IGOs 
0.034** 0.002 
(0.004) (0.002) 

Allies * ln(Time) 
0.135*  
(0.056)  

Contiguity * ln(Time) 
-0.162*  
(0.064)  

Distance * ln(Time) 
-0.112** 0.104** 
(0.024) (0.035) 

Major Power Dyad * ln(Time) 
0.214**  
(0.045)  

Democracy * ln(Time) 
-0.009*  
(0.004)  

Joint IGOs * ln(Time) 
-0.012**  
(0.002)  

Log-Likelihood (partial) -18045.94  
† = p ≤ 0.10, * = p ≤ 0.05, ** = p ≤ 0.01, two-tailed tests. 

 
Table 4 presents the multi-state model results.  The first column contains the estimates for each 

covariate’s effect on MID onset, and the second column contains the estimates for MID termination, 

equivalent to a transition from an ongoing MID to peace.  We tested for PH violations for both 

transitions, and implemented corrections accordingly.  Table 4’s results demonstrate the importance of 

accounting for causal complexity.  Consider regime type’s effect when operationalized as the least 

democratic state within the dyad.  As this state becomes more democratic, the risk of MID onset declines 

(Peace → MID).  With the time interaction, this effect grows increasingly negative, meaning that 
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democracy plays an even greater role in reducing the risk of MID onset as peace endures.  However, 

regime type has no significant effect on MID duration (MID → Peace).  Both results together indicate 

democracy may be helpful in avoiding MIDs in the first place, but if a MID does start, democracy plays 

little role in reducing the MID’s duration.  Without differentiating between these two distinct transitions, 

regime type’s different effects might be overlooked.  However, Cox models’ flexibility allows us to 

straightforwardly evaluate this and many more causally complex hypotheses that would be significantly 

more difficult to test with logit. 

 

V.  Conclusion 

We offer a new way to substantively interpret estimates from duration models, in the form of 

transition probabilities.  Our proposed quantity has an easy interpretation, one arguably more 

straightforward than many current interpretation techniques.  Further, they bridge the divide between 

modes of interpretation more broadly familiar to political scientists, such as predicted probabilities, and 

the less familiar modes of interpretation that accompany duration models.  Transition probabilities view 

the process of interest as having at least two discrete stages (e.g., alive, dead).  They subsequently tell us 

the probability that a subject occupies any particular stage by time t, given a starting time and starting 

stage.  Current interpretation strategies in duration models fix these starting conditions by default—all 

subjects begin in the same stage and have just become at risk (implying t = 0).  However, transition 

probabilities permit these conditions to be altered, providing researchers with more freedom to specify 

scenarios best aligning with their substantive hypotheses.  In short, transition probabilities tell us about 

‘which’ stage a subject likely occupies.  To estimate transition probabilities, practitioners can use the 

mstate package in R (non-, semi-parametric models), our own package in Stata (non-, semi-parametric), 

or Crowther and Lambert’s Stata package (non-parametric, parametric). 

Transition probabilities have further implications for any political scientist working with BTSCS 

data.  Typically, researchers opt for logit/probit because the models produce easily interpretable post-

estimation quantities, compared to duration models.  Transition probabilities nullify this line of 
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argumentation.  We suggest this matters because, in some cases, duration models can more adroitly model 

certain processes than L/P can.  We specifically highlighted the semi-parametric Cox model’s ability to 

address three things: easily testing and correcting for PH violations, removing concerns about baseline 

hazard misspecification, and easily modeling causally complex processes.  We used applications from 

judicial politics and interstate conflict to showcase these facets.  In the process of doing so, we showed 

how transition probabilities provide useful, straightforward interpretations from Cox models. 
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Appendix A: 

Cox/cloglog Equivalence Derivation 
 
 In this appendix, we reproduce the derivation demonstrating that a continuous-time Cox semi-

parametric duration model is equivalent to a discrete-time cloglog model with time dummies for its 

temporal dependence correction (also referred to as “grouped duration data”).  We include the 

equivalence derivation for reference purposes; others have shown the same elsewhere (e.g., Beck, Katz, 

and Tucker 1998, 1284–1285; Cameron and Trivedi 2005, 600–601, 602–603).  We focus on the general 

intuition behind the derivation, leaving the underlying mathematics to the previously cited others.  We try 

to use j to denote calendar time (e.g., year) for an observation, and continue using t for the duration. 

 The place to begin is by realizing that a continuous Cox model is usually expressed in terms of 

h(t), the hazard, and that a cloglog model (discrete time or otherwise) is usually expressed in terms of 

Pr(y = 1), the probability of an event occurring.  When we speak of discrete-time durations, yij = 1 means 

the duration terminates in time period j for subject i.  The cloglog’s functional form is (Long 1997, 51): 

Pr " = 1 = 1 − exp − exp '2#  6 

To show equivalence, we will need to first reexpress the continuous-time Cox’s hazard function 

in terms of a probability.  We can then convert the continuous-time Cox expression into discrete time, and 

see if the resultant expression is equivalent to equation 6. 

 

1.  CONTINUOUS COX: HAZARD TO PROBABILITY 

In the main text, we already discussed how to express the Cox hazard in terms of a probability.  

We start from h(t): 

ℎ 5 = ℎ6(5) exp '2#VW  7 

From h(t), we can derive the expression for S(t), the survivor function, because writing an expression for 

h(t) necessarily specifies a distribution for t (Kalbfleisch and Prentice 2002, 7).  If we know t’s 

distribution, any function involving t’s distribution—its probability density (PDF), cumulative 
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distribution (CDF), survivor, hazard, or cumulative/integrated hazard—can be expressed in terms of the 

other functions.  h(t) and S(t)’s connection is through the basic identity: 

X 5 = exp	 − ℎ Q YQ
F

6
 8 

where u denotes all times at which we observe any failure event on the interval (0,t].25  S(t) tells us the 

probability that a subject has not failed by time t.  For our probability, we want to know whether the 

subject has failed by time t.  This quantity is equal to the complement of S(t), 1 – S(t) ≡ F(t), t’s 

cumulative distribution function.   

Pr " = 1 = Z 5 = 1 − exp	 − ℎ Q YQ
F

6
 9 

We now have our continuous-time Cox model expressed in terms of a subject’s probability of failing by t.   

 

2.  CONTINUOUS TIME TO DISCRETE TIME 

TABLE 5.  Data Structure for Two Subjects 
CONTINUOUS TIME DISCRETE TIME 

i j0 j t0 t y i j0 j t0 t y 
1 1990 1993 0 4 1 1 1989 1990 0 1 0 
2 2005 2007 0 3 1 1 1990 1991 1 2 0 
      1 1991 1992 2 3 0 
      1 1992 1993 3 4 1 
      2 2004 2005 0 1 0 
      2 2005 2006 1 2 0 
      2 2006 2007 2 3 1 

Note: j0 = first year where i is at risk.  y = 1 if subject fails by t, 0 otherwise. 
 

 We use “discrete time” to refer to situations in which a subject experiences failure sometime in a 

fixed interval, but we do not observe precisely when.26  For instance, if we are recording BTSCS data on 

an annual basis, yij will tell us that our failure event happened sometime between the end of year j – 1 and 

the end of year j—(j – 1, j].  Using a discrete-time model for BTSCS data tells us the probability of our 

                                                        
25 ℎ Q YQ

F

6
= [(5), the cumulative hazard function.  The cumulative hazard’s value in t will be the sum of all 

hazard values for every time point from 0 up through t. 
26 This particular situation is sometimes referred to “grouped duration data” instead of discrete-time data. 
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event occurring sometime during year j.  We compute t, the duration, by counting the number of years in 

which the subject has been at risk but not failed (or the number of years since the subject’s last failure, if 

subjects can experience the failure event multiple times).  Once at risk, the first year without a failure 

would be t = 1, the second year, t = 2, and so on.   

We acknowledge the shift to discrete time by modifying the interval over which we integrate the 

hazard.  To explain by way of example: Table 5 shows data on two subjects, in a continuous-time format 

and a discrete-time format.  Both formats use counting-process notation by adding a column for t0 (Box-

Steffensmeier and Jones 2004, 99–101).  t0 represents where the previous observation “left off” counting 

for t within a panel, and t continues to represent “up through the end of this time period,” also within the 

panel.  t’s counting-process interpretation is consistent with our previous discussion of t in discrete 

time—it represents the probability of our event occurring sometime during year j (t), but after year j – 1 

(t0).  For continuous time, the interval’s starting point was implicitly t0 = 0,27 giving us our integration 

interval of (t0,t] = (0,t].  For discrete-time data (e.g., annual), t0 = t – 1.  Our integration interval shifts for 

discrete-time data to reflect each observation’s t0.  Equation 9, for discrete time, becomes: 

Pr "VW = 1 = 1 − exp	 − ℎ Q YQ
F

F\(
 10 

If we insert equation 7 into equation 10 and simplify, we get: 

Pr "VW = 1 = 1 − exp	 − ℎ6(Q) exp '2#VW YQ
F

F\(
 

Pr "VW = 1 = 1 − exp	 − exp '2#VW ℎ6(Q) YQ
F

F\(
 

11 

The final piece to recognize is that ℎ6(Q) YQ
F
F\(

 will return different values across t’s, but will be 

constant within a (t – 1, t] interval.  Let %F = ℎ6(Q) YQ
F
F\(

, to reinforce that the integral’s value is 

constant within each time interval.  If we substitute αt into equation 11 and rearrange terms, we obtain: 

                                                        
27 t0 = 0 implies no left truncation for either subject.   
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Pr "VW = 1 = 1 − exp	 − exp '2#VW %F  

Pr "VW = 1 = 1 − exp	 − exp '2#VW + ln	 %F  
12 

Moving αt inside the parenthesis containing '2#VW makes clear that we are simply adding some constant—

because the natural log of a constant is another constant—to the regression line (represented by '2#VW).  

Adding a constant to the regression line changes the line’s intercept by shifting it up or down.  Since 

ln	 %F  is indexed by t, the intercept shifts effectively give each t its own fixed effect.  We can express 

fixed effects for t by including time dummies (denoted ^F = ln	 %F  by BKT), giving us a temporal 

dependence correction.  Equation 12 is identical to equation 6 if we added time dummies to the latter. 
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Appendix B: 
Brief Duration Model Overview 

 
Duration models are concerned with lengths of time as dependent variable.  They are useful when 

we are investigating questions about how long before a subject experiences some event.  We count the 

number of periods that the subject “survives” before experiencing the event; the resultant quantity is t, our 

duration of interest and dependent variable.  OLS is not particularly well-suited to model durations, 

because it assumes (1) the dependent variable can be positive or negative, (2) that the regression 

equation’s errors are normally distributed, and (3) that all our subjects fail during our observation period, 

meaning that we know the start and end point of every subject’s duration (Crowder 2012, 3–5).  One or 

more of these assumptions are false when working with durations as a dependent variable—quantities of 

time are non-negative, the errors they subsequently produce can be non-normal, and we do not always 

observe the duration’s end point for all our subjects (i.e., we may have right-censored durations). 

 Duration models come in three major classes.  The classes are differentiated from one another 

based on two factors.  The first factor is baseline hazard functional form.  It refers to whether we assume 

a functional form connecting the baseline hazard (h0) to our observed t’s, where the baseline hazard 

expresses the hazard of the duration’s terminating event occurring when there are either no covariates in 

the model, or when all of the covariates are set to zero.  The second factor is the covariate link function.  

Here, we refer to whether there are covariates in the model, because if there are, we must specify a 

function connecting these covariates to our observed t’s.  We use x to refer to a single covariate, and X to 

refer to the entire set of included covariates. 

We begin our discussion with continuous-time durations, meaning that our dataset has one record 

for every subject we observe.  If we assume no functional form for the hazard and have no covariates, we 

obtain a non-parametric duration model.  The Kaplan-Meier curve is the classic example, and is usually 

expressed in terms of the survivor function S(t), which represents the fraction of subjects still at risk in t.28  

Its equation is (Klein and Moeschberger 2003, 92): 

                                                        
28 If a semi-parametric duration model does not include covariates, the resulting h(t) is a non-parametric expression. 
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X 5 = 1 −
YF
_F

F	`	FMax

 13 

implying that the hazard function is: 

ℎ 5 =
YF
_F

 14 

where 5Max represents the largest observed failure time, dt represents the number of subjects that fail in 

time period t, and Nt represents the number of subjects still at risk at the start of t, which some denote as 

Nt-. 

If we continue to impose no functional form for the baseline hazard, but include covariates in our 

specification, we now have a semi-parametric duration model.  Cox proportional hazard models are the 

most ubiquitous of the semi-parametric duration models.  Cox models take the form: 

ℎ 5 = ℎ6(5)exp	('
2#) 15 

Notice how the covariates (X) and their corresponding estimates (β) are linked to h(t) using an exponential 

link function—we are exponentiating the linear score of β and X’s product.   

Finally, if we do make a functional form assumption about the baseline hazard, with or without 

covariates, we obtain a parametric duration model.  There are many variants of parametric duration 

models.  They differ from one another in terms of the baseline hazard’s functional form.  For example, a 

Weibull parametric duration model, when specified in terms of proportional hazards (denoted with “PH” 

subscript), has the form: 

ℎ 5 = c5d\(exp	('01
2#) 16 

where p is the hazard’s shape parameter, a quantity to be estimated from the data.  Box-Steffensmeier and 

Jones (2004, chap. 3) provide a list of parametric duration models commonly used in political science, 

along with the models’ functional forms. 

On a concluding note, duration models’ estimated coefficients can come in one of two metrics: 

accelerated failure time (AFT) or proportional hazards (PH).  The coefficients’ metric matters because a 

positive AFT coefficient means the opposite of a positive PH coefficient.  Some duration models’ 
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coefficients can be reported in either metric (e.g., Weibull, exponential),29 but some models’ coefficients 

can only be reported in AFT (e.g., generalized Gamma, log-logistic, log-normal) or only in PH (e.g., 

Gompertz, Cox).  Coefficients in an AFT metric speak directly to x’s effect on the duration, where a 

positive 'efg means higher levels of x will lengthen t, the duration of interest.  By contrast, coefficients 

from PH metric speak in to x’s effect on the hazard of the duration ending (h(t)).  Specifically, the hazard 

acts like a conditional probability, modeling the probability that subject i will experience the event 

terminating our duration in time period j, given that i has not experienced the event yet.  A positive '01 

means higher levels of x increase the probability of the duration’s terminating event, implying the 

duration itself will be shorter. 

 

  

                                                        
29 Importantly, the AFT vs. PH metrics for Weibull and exponential parametric models are based on the same 

underlying math.  You can transform AFT coefficients into PH coefficients or vice-versa (Box-Steffensmeier and 

Jones 2004, 29). 
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Appendix C: 
Simulation Procedure – Outline 

 
1. Decide on a number of subjects to move through the process, a starting time (s), a starting stage, 

and an end time (t) for all subjects.   

2. For each subject: 

a. Set s to the current time and the starting stage as the current stage. 

b. Ensure the subject is at risk of a transition.  If it is not (e.g., it is in an absorbing stage), 

move to the next subject. 

c. From the set of all observed failure times, randomly select a transition time larger than 

the current time.  Call this t*. 

d. If t* > t, subject stays in current stage until end of specified time interval t.  Move to the 

next subject. 

e. Otherwise, select which transition the subject will experience, with each transition’s 

selection probability being equal to h(t*). 

f. Record t* as the new current time and (2e)’s stage as the new current stage, for clock 

time durations.  Gap time is the same, except that the new current time resets to 0. 

g. Repeat (2b)-(2f) until the subject’s t* > t or until the subject enters a stage with no 

outward transitions. 

3. From the simulation results, count the number of subjects occupying each stage at each unit 

interval in (s,t]. 

4. Loop over 1-3 for the desired number of simulation runs. 
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Appendix D: 
Proportional Hazards Tests for Logit Models 

 
The procedure for testing for violations of the proportional hazards assumption in the context of 

panel logit models is described by Carter and Signorino (2010).  Testing for violations of the PH 

assumption consist of performing a series of likelihood-ratio tests.  The restricted model in the tests is the 

base specification of the model, which assumes proportional hazards.  The unrestricted specification(s) 

are similar to the base model, but include an interaction between a covariate and the three time 

polynomials.  For each covariate in the model, it is necessary to estimate a unique model with time 

interactions.  Once these models have been estimated, it is then possible to perform a series of likelihood-

ratio tests of equivalence between the core restricted model and each of the unrestricted models.  The 

result of these models indicates whether the interactions between each covariate and the time polynomials 

significantly improves model fit.  If the test result is statistically significant, it indicates a likely violation 

of the PH assumption for that particular covariate.  To correct for these violations, as with the Cox model, 

it is possible to include an interaction between the violating covariate and each of the terms in the time 

polynomial. 

Table 6 presents the results of tests for violations of the PH assumption for the logit model in 

Table 3 of the main text.  Each row contains the result of a likelihood-ratio test of the core restricted 

model, and an unrestricted specification of the model including an interaction between the covariate and 

each of the three time variables.  Table 6 indicates that each of the covariates in the model likely violates 

the PH assumption, as the test statistic for each likelihood-ratio test is significant at the p < 0.000 level.  

To correct for these violations, it is necessary to include interactions between each of the covariates in the 

model, and each of the time terms.  This result is the same as that attained from tests of Schoenfeld 

residuals following estimation with a Cox model. 
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TABLE 6.  Proportional Hazards Tests for Logit Specification 
 
 χ2 p-value 

Allies 26.06 0.000 

Capability Ratio (ln) 45.57 0.000 

Economic Interdependence (Low) 47.75 0.000 

Contiguity 93.90 0.000 

Distance (ln) 19.17 0.000 

Major Power Dyad 18.76 0.000 

Democracy (Low)  46.97 0.000 

Joint IGOs 89.38 0.000 

Test statistics result from a likelihood-ratio test of equivalence between 
the base restricted model, and an unrestricted variant with time 
interactions for each covariate.  

 


