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Does emotion matter
N politics?
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Probably.
How can we analyze It?




Roadmap

1. Intro.  what is audio data?
2. Model: classitying audio with SAM
3. Dataset: the Supreme Court audio corpus

4. Results:

o Benchmark against currently available audio methods

o Compare to text-only approach for emotion detection
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What I1s audio data?
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What is the
Speaker Affect Model?




‘It's not using statistics,
it's using iImagination!”

- Justice Antonin Scalia



OK, It's using statistics.




A model of speech
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Notation

e Speech is sequence of ‘utterances” (u=1,2,---)

o each utterance has a ‘mode of speech”  (.S,)

o Utterance is sequence of 'frames’ (t=1,2,--)

o in each frame, a sound is being pronounced (R, )

e Sound generates audio features  (X,;)



Speaker Affect Model

mode of speech: Su ~ Cat (Ag, , )
SOllIldS: (Ruat | SU) ~ Cat (I‘}S{;tl *)

audio features: (Xu,t | Su,Ru,t) ~ N (,UJSU,RU,N ESwRu,t)

A : mode-of-speech transition matrix

I . sound transition matrix for mode-of-speech m
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Estimation: Single Mode
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Estimation: Single Mode

e Estimate by EM with forward-backward algorithm

o E-step
o Expected emotion labels

o Expected emotional transitions

o M-step
o Sound distributions

o Transition probabilities

e Rcpp implementation in our package, SAM (alpha)
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high variance

low intensity

loud, mid-range 1st formant

high zero-crossing rate

high resonance

‘generic’

"silence’

“vowel

"sibilant’




"generic’ ‘silence’ "vowel’ ‘sibilant’ ?
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‘generic’ ‘silence’ "vowel’ ‘sibilant’ ‘audience’
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Estimation: Multiple Modes

1. Experts determine speaking modes & rubric
2. Humans code "speaking mode” for training set

3. Unsupervised HMM for each speaking mode

o Automatically classify sounds, estimate content/usage

4. Supervised HMM for changes in mode of speech
(estimate flow of speech)

o Usage of different speaking modes

o How speaking modes change over course of speech

o Interplay in speaking modes between people






Supreme Court
Audio Corpus




Oral Arguments

e Supreme Court data from Oyez Project

o 782 recordings from Roberts court, ~800 hours total

o Timestamped transcripts with speaker labels

e Segment into 454k utterances

o Pool lawyers together, analyze each justice separately

e Extract 81 features for each 25-millisec. window



Validating the Model
with Supreme Court Data




An Easy Task: Speaker ID

o Distinguish between 11 coarse modes of speech:

o Speech by Alito, speech by Breyet, ..

e Practical application: deliberation experiments

1

O

Record audio of deliberation in lab or field

Have participants self-introduce at beginning
Automatically generate transcript with transcribeR
Learn a model of each participant's speech

Use participant models to label the transcript



An Easy Task: Speaker ID

e Draw 100 utterances per justice (1100 total)

e Evaluate our model's out-of-sample predictive
accuracy by K-fold cross-validation

o Split the data into K balanced folds. For each fold:

o Hold out the 1/K utterances from this fold for testing
o Divide the remaining (K-1)/K utterances by speaker
o For each speaker, train a speaker-specific HMM

o Calculate log-Llik. of held-out utterances under each
model = predict speaker based on the most likely model



Audio Model Horse Racel

o Comparison with pyAudioAnalysis:

o Widely used Python library for audio classification

o Only alternative package in R or Python

e Benchmark performance vs. all available models:

o Support vector machines
o Gradient boosting
o Random forest

o Extremely randomized trees

e These methods do not model speech dynamics



pbest pyAudioAnalysis model
by out-of-sample accuracy
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by out-of-sample accuracy
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A closer look:
how classification works
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LLH of utterance
under model for Antonin Scalia
(scaled by utterance duration)
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Supreme Court
Emotion Classification




Preliminary Results

o Coded 200 utterances by Chief Justice Roberts

o Modes of speech: 'neutral’ (64%) and "skeptical” (36%)

o Perceived ‘skepticism” depends on both text & tone

o Existing Supreme Court sentiment analyses
use text of utterances only

o Speaker affect model uses tone of utterances only



Preliminary Results

e HMM selected by K-fold CV: 15 states, A=0.01

o Qut-of-sample accuracy: 70% accuracy
o True positive rate (skepticism): 71%

o True negative rate (heutral). 70%

e Best pyAudioAnalysis model: SVM with C=10
o Overall accuracy 61%, TPR 58%, TNR 63%

o Stanford Core NLP deep learning model with text:
o Vast majority (78%) classified as "'negative’ (= skepticism?)

o QOverall accuracy 45%, TPR 89%, TNR 20%
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Conclusion

e Recap

o New sources of data for social scientists
o New questions about political speech

o Advances over state-of-the-art CS models

o Ongoing work
o Incorporating text into audio analysis (Knox, Lucas)
o Rhetoric of Parliamentary Debate (Goplerud, Knox, Lucas)

o Analyzing visual features with text (Lucas)



