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Abstract

Localized network processes are central to the study of political science, whether
in the the formation of political coalitions and voting blocks, balancing and bandwag-
oning, policy learning, imitation, diffusion, tipping-point dynamics, or cascade effects.
These types of processes are not easily modeled using traditional network approaches,
which focus on global rather than local structures within networks. We show that lo-
calized network processes, in which network edges form in response to the formation
or characteristics of other edges, are best modeled by reconceptualizing edges (e.g.,
an alliance) as network nodes, and relationships among edges (e.g., belonging to the
same neighborhood) as edges among these nodes. We propose a theoretical frame-
work for modeling these processes and a statistical estimator that corresponds to this
framework—a local structure graph model (LSGM). We demonstrate the properties of
LSGMs using Monte Carlo simulations and explore action–reaction processes in two
empirical applications: formation of alliances among countries and legislative cospon-
sorships in the US Senate.
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1 Introduction

Social actors rarely act independent of other’s influences. Legislators confer before important

votes (Kingdon 1973; Matthews and Stimson 1975) and seek one another’s cosponsorships

on legislation (Kirkland and Gross 2014); international firms form networks of production

locations in many different countries (Echandi, Krajcovicova, and Qiang 2015); countries

are embedded within dense networks of trade, inter-governmental organizations (IGOs),

and alliances (Maoz 2006, 2010; Chyzh 2016; Hays, Schilling, and Boehmke 2015). Growing

theoretical attention to the study of interdependence has, in turn, created a demand for more

appropriate methodological tools that directly model such interdependence—a demand that

spurred burgeoning statistical research in network analysis (Franzese, Hays, and Kachi 2012;

Gile and Handcock 2015; Minhas, Hoff, and Ward 2016).

This paper builds on this research by focusing on modeling of what we refer to as local-

ized network processes—a class of theoretical processes involving the formation of network

structures as a function of other structures that form within the network. If we think of

actors as nodes within the network, and pairwise relationships among them as edges, then

in the simplest form localized network processes would include the formation of network

edges as a function of other edges within the network. The location affects these types of

action–reaction processes: where within the network an action occurs affects the likelihood

of reaction to it. Localized network processes include the formation of coalitions and vot-

ing blocs, balancing and bandwagoning, policy learning, imitation, diffusion, tipping-point

dynamics, and cascade effects.

Central theories behind coalition formation, for example, emphasize that alignments

within coalitions (edges) happen in response to formation of alignments (edges) within a

rival coalition. Voting blocs in legislatures form to balance opposing blocs or bandwagon

as one coalition rushes to provides support to their co-partisans. Thus, if we think of
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legislators as nodes within a network, and an act of cosponsoring piece of legislation as a

formation of an edge with the sponsor and other cosponsors, then the relational processes of

interest may involve bandwagoning—additional cosponsorships by other ideationally similar

legislators—or balancing—an introduction of a competing bill cosponsored by legislators

from the opposite part of the ideological spectrum. Analogously, alliances among countries

frequently form with the goal of balancing against an alliance of a political rival: e.g., the

Soviet bloc formed the Warsaw Pact in response to the US and its allies forming the North

Atlantic Treaty Organization (NATO) in the aftermath of World War II.

Baccini and Dür (2012) posit a similar theoretical process behind the formation of pref-

erential trade agreements, arguing that pairs of countries sign mainly as response to the

preferential trade agreements formed by other countries, with which they are competing for

exports. Political parties frequently form coalitions, or join together to share manifestos and

ballot lines. Lobby groups have been shown to form in response to other special-interests

forming lobbies of their own (Gray and Lowery 2001).

Such substantively important processes, however, are not easily modeled using the tra-

ditional network approaches, such as exponential random graph models (ERGMs) or latent

space models. ERGMs are focused on global or system-level rather than localized network

configurations. The resulting inferences related to the global structure of the network (i.e,

the probability of occurrence of particular structures within the network) do not allow for

local -level insights (i.e., where in the network are these structures most likely to be observed)

(Casleton, Nordman, and Kaiser 2016). Latent space models, which aim at accounting for

unobserved unit- and edge-level effects, are not easily adaptable for modeling localized pro-

cesses.

The theoretical framework proposed here relies on relaxing the pre-determined assump-

tions of what constitutes a node and/or an edge within a network. We argue that identifica-

tion of nodes and edges must be tailored to the specific empirical application. Thus, while in
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traditional approaches actors are treated as network nodes and relationships among them as

edges, modeling localized network processes may require, for example, treating edges (e.g.,

an alliance) as network nodes, and connectivities among edges (e.g., belonging to the same

neighborhood) as (second-degree) edges. The proposed theoretical framework emphasizes

connectivities among edges, or second-degree connectivities, in a general sense. The source

of connectivity may stem from discrete edge characteristics (e.g., two edges are connected

if they share a common node or if they connect two similar nodes) or may be measured

on a continuous scale (e.g., intensity/strength of connections among edges depends on a

continuous dyad-of-edges-level attribute).

We demonstrate that the theoretical processes of interest—processes that involve realiza-

tions of network edges as conditional on realizations of other edges—may be estimated using

an adaptation of a class of network/spatial models known in statistics as local structure

graph models (LSGMs), that fall within the broader class of Markov random field models

(MRFs) (Casleton, Nordman, and Kaiser 2016). To formulate an LSGM, one must first

specify a set of full conditional distributions for each potential edge in the network, i.e. the

distribution of the presence/absence of an edge given the outcomes for all potential edges

and a set of exogenous covariates. Thus, each conditional distribution is specified in terms

of a neighborhood structure that explicitly identifies the degree of “local” dependency be-

tween all pairs of edges within the network. As we show in the article, a set of conditional

distributions can determine a joint probability model for the network, under some rather

general conditions. We use Monte Carlo simulations to demonstrate that the model allows

for practical estimation of parameters that are easily interpretable. Finally, we supplement

simulations with two empirical applications: the formation of the alliance network among

countries between 1946–2007 and the formation of the network of legislative cosponsorships

on labor-related legislation in the Senate of the 107th US Congress.
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2 Current Approaches to Modeling Interdependence

Network analysis has found wide application in all sub-fields of political science. Schol-

ars have applied network tools to derive insights on the functioning of legislatures (Cho and

Fowler 2010), diffusion of policies (Desmarais, Harden, and Boehmke 2015), and international

conflict and cooperation (Kinne 2013). Network analysis has informed both theory-building

and inference. Thus, some research employs network game theory and agent-based modeling

with the goal of tracing the process of network formation and studying the properties of

networks of interest (Jackson 2008; Chyzh 2016; Gallop 2016; Maoz and Joyce 2016; Siegel

2009). Other research focuses on development and application of network-informed prob-

abilistic estimators that would allow for deriving statistical inferences. Such probabilistic

network modeling may be further classified into exponential random graph models (ERGMs),

latent space models (LSMs), and spatial or conditional autoregressions (SARs and CARs).

ERGMs account for network dependencies via the inclusion of covariates that play the

role of sufficient statistics and correspond to specific global topological features of the graph

(e.g., reciprocity, triads, 2-stars). These network topologies, also know as Markovian features,

are defined as counts of all elements of a certain class weighed as a proportion of the total

count that could potentially form in the given graph. The parameters associated with such

covariates will then inform us of the prevalence of each type of element in the observed

realization of the graph (Wasserman and Faust 1994; Carrington, Scott, and Wasserman

2005).

In contrast to our approach, ERGMs provide the most leverage for modeling global

network dependencies rather than those localized to specific parts of the network. While

some theoretical processes are easily modeled via global or network-level Markovian features,

the localized network processes such as coalition-building, balancing and bandwagoning, or

spatial diffusion are less amenable to the ERGMs framework. Whereas ERGMS assume
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homogeneous effects within the network, e.g., that all triads have the same probability of

closure, the relational theoretical processes, which are central to many political processes,

are localized to particular parts of the network.

Coalition-building (e.g., international alliance coalitions, voting coalitions in legislatures,

building voter support for a political candidate), for example, is often theorized as an out-

come of two processes—balancing, or formation of blocs in other parts of ideological spec-

trum (Morrow 1991; Kedar 2005)—and bandwagoning, or the tendency of weaker players to

align with the expected winner (Sweeney and Fritz 2004; Hassell 2016). In the traditional

network-theory conceptualization of an alliance of two states or two legislatures as an edge,

the balancing process may predict that the realization of any given edge is conditional on

realization of edges located in the opposite part of the ideological spectrum: i.e. the com-

peting coalitions form in response to one another. The bandwagoning process, in contrast,

may predict that edge formation will cluster within ideological space: i.e. formation of a

voting alliance will likely trigger additional allies to jump on-board.

While one may, of course, try to imagine possible ways to model coalition formation

within the ERGMs set-up (e.g., using triads or two-stars), any Markovian features would

get at the theorized processes only indirectly. A coefficient on triads, for example, would

capture the average tendency of any two actors within the network to form an alliance, given

that they are both allied with the same third actor. Such an approach, however, would not

allow for localizing alliance formation to particular parts of the network (e.g., ideationally

similar states are more likely to ally).

LSMs, in turn, allow for a hierarchical approach to modeling network data, in which

dependence is accounted for by considering the relevant node-specific latent variables that

are sources of non-independence, such as group membership or position within social space

(Hoff and Ward 2004; Minhas, Hoff, and Ward 2016). Just like with ERGMs, LSMs focus on

sources of dependence associated with nodes, whereas many important applications require
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modeling dependence among edges.

The third type of network modeling, or, to be more precise, “spatial” modeling—CARs

and SARs—accounts for non-independence among observations by including lag structures

which measure theorized sources of connectivity (Anselin 2013; Besag 1974; Hays, Kachi,

and Franzese 2010). While existing social science applications of spatial autoregression are

also limited to modeling diffusion among nodes, rather than edges, we propose an extension

that would allow for precisely that.

2.1 Conceptualizing Connectivities among Network Edges

To illustrate the theory behind our approach, let us start with a hypothetical example of

a network that consists of a number of nodes, some of which are connected by an edge, as

shown in Subfigure 1a of Figure 1. In most of the traditional network research, nodes in this

network would represent individual actors, such as legislators, and edges would correspond

to some type of relationship among nodes, such as an action of cosponsoring the same piece

of legislation. Any two legislators then would then share an edge if they both cosponsored

the same piece of legislation.

This traditional framework is useful for studying individual-level factors that may lead

legislators to cosponsor legislation, such as party identification, seniority, home-state pop-

ulation, etc., or dyadic-level factors, such as whether pairs of legislators are from the same

party or similar in seniority. Formation of legislative coalitions in support or opposition to

legislation, however, is not easily modeled using either individual or dyadic covariates. For-

mation of legislative coalitions is a localized network process, in which network edges realize

in response to other edges. In a two-party system, for example, each pair of legislators may

cosponsor a bill to either signal their support for the bill to members of their own party or

to balance a bill that is gaining cosponsors among the opposing party.

Modeling such localized processes is facilitated by adopting more flexible assumptions on
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Figure 1: Alternative Conceptualizations of Nodes and Edges
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what constitutes network nodes and edges. Modeling the formation of legislative cospon-

sorships, for instance, is made more straightforward if we treat cosponsorships as nodes
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connected to one another based on the ideological similarity among the legislators that form

them. This re-conceptualization is shown in Subfigure 1b, in which each edge from Sub-

figure 1a is now depicted as a node, and relationships between each pair of edges (whether

they connect two nodes of the same color) as edges. For example, node 24 in Subfigure 1b

corresponds to the edge between nodes 2 and 4 in Subfigure 1a, and nodes 35 and 57 are

connected by an edge because they both connect nodes of the same color in Subfigure 1a.

Returning to the cosponsorships example, this framework allows us to model cosponsor-

ships as a tipping-point or bandwagoning process: initial introduction triggers a cascade of

cosponsorships among ideologically similar legislators. Alternatively, growing support for a

bill may lead to a balancing process, i.e., an introduction of an opposing bill by the ideologi-

cally dissimilar legislators. Then the network of cosponsorships would look like that depicted

in Subfigure 1c, in which two cosponsorshios are connected if they connect nodes of different

colors. Second-degree edges may also be continuous, i.e. in Subfigure 1a edges are placed in a

two-dimensional space with x- and y- coordinates corresponding to the numerical identifiers

of the nodes that make up each edge. In the latter example, the strength of connections

among edges is measured using the Euclidean distance, i.e. edges 24 and 35 are separated by

a shorter Euclidean distance and, therefore, have a stronger connection than edges 24 and

57.

3 Statistical Estimation of Local Structures within Networks

In this section, we demonstrate a statistical approach to modeling localized network outcomes

using the framework of the Markov random field models (Casleton, Nordman, and Kaiser

2016; Kaiser and Caragea 2009). Suppose i is a potential edge in a network of n edges (e.g.,

a cosponsorship in the example discussed above), i = {1, 2, . . . , n}, so that i’s location is

denoted as si = (ui, vi) in Cartesian space. Next, define i’s neighbors as N i, so that yyy(N i)
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is a vector of outcomes in i’s neighbors and yyy(N i){yyy(sj) : sj 6= si}. If dependencies among

edges are binary, then the next step if to make a Markov assumption of conditional spatial

independence of the form:

f(y(si)|y(sj) : sj 6= si) = f(y(si)|y(Ni)) (1)

Thus, in the case of binary dependencies among edges, the realization of any given edge i is

dependent on realization of every other edge in its neighborhood Ni, yet conditionally inde-

pendent of realization of edges in its neighbors’ neighborhoods. Intuitively, this assumption

simply means that i is affected by its immediate neighbors rather than by its neighbors’

neighborhoods.

Note that, if dependencies among edges are measures on a continuous scale, as is the

case of interest here, we can simply define is neighbors as −i, so that yyy−i = yyy(s−i) = {yyy(sj) :

sj 6= si}. In case of continuous dependencies, the Markov assumption (1) is redundant.

Further, denote the binary random variable, y(si) = yi, that records the presence or

absence of an edge, such that:

y(si) =











1 if edge is present

0 if edge is absent.

Two edges are assumed to be connected by an edge if they belong to the same neighbor-

hood(s), with neighborhoods defined based on the theorized process. More formally, we can

say that an edge i is conditionally independent of edge j unless j is a neighbor or i (and

hence j is a neighbor of i). Of course, if second degree edges are measured on a continuous

scale, then the realization of edge i is dependent on realizations of all other edges (every

edge is in every other edge’s neighborhood). Each neighborhood is measured via an n-by-n

matrix W, whose ij cell is a binary or a continuous measure of connectivity between edges
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i and j and with 0s on the major diagonal (edges have no connectivity with themselves).

In political-science applications, the connectivity matrix W may represent physical or geo-

graphical distance between edges, their ideological similarity, or any other pairwise measures

of relationship.

Consistent with the legislative example above, we assume a binary conditional distribu-

tion, which is expressed in exponential family form as:

P(Yi = yi|yyy(Ni)) = exp [Ai(yyy(Ni))yi − B(yyy(Ni))] , (2)

where Ai is a natural parameter function and Bi = log[1 + Ai (y(Ni))] . Conditional depen-

dencies among edges are modeled through the natural parameter function as:

Ai(y(Ni)) = log

(

κi

1− κi

)

+ η
∑

j∈Ni

wij(yj − κj), (3)

where log
(

κi

1−κi

)

= XT
i βββ, Xi is a vector of exogenous covariates, βββ is a vector of estimation

parameters, wij is the ijth element of a matrix of connectivities among edges, W, η is a

dependence parameter, and yj is the outcome in location sj. Parameters βββ are associated

with the instantaneous effects of the exogenous covariates, while the dependence parameter

η represents the dependence among observations, with positive values indicating a direct

relationship between edge realizations in neighboring units and negative values indicating

an inverse relationship.

The formulation of the spatial dependence term, η
∑n

j=1wij(yj − κj), ensures that it can

make a positive or a negative contribution to the natural parameter function. This term

increases the value of the natural parameter function if the realization of the neighbors’

values exceeds its expectation, yj > κj, and decreases its value if the observed value is less
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than the expected value, yj < κj. Since in the binary case yj ∈ {0, 1} and 0 < κj < 1,

a positive dependence parameter, η > 0, indicates that an absence of edges in neighboring

locations, yj = 0, has a negative effect on the probability that yi = 1, and the presence

of edges in neighboring locations, yj = 1, has a positive effect. Analogously, a negative

dependence parameter, η < 0, implies the opposite: the absence of edges in neighboring

locations, yj = 0, has a positive effect on the probability of edge realizations in yi = 1, and

the presence of edges in neighboring locations, yj = 1, has a negative effect.

If the connectivity among nodes, W, is measured on a continuous scale, s.t. larger values

of wij denote larger differences between i and j, then a positive dependence parameter,

η > 0, indicates that a presence of an edge in a distant location yj = 1 has a positive effect

on the probability of edge realizations in yi, which is consistent with balancing. A negative

dependence parameter, η < 0, in contrast, would indicate that a presence of an edge in a

distant location has a negative effect on the probability of yi = 1, which is consistent with

such processes as clustering.

As is the case for the general class of Markov random field models, of which the model

above is a special case, the specification of full conditional distribution leads to a valid

joint distribution under certain conditions (Kaiser and Cressie 2000). For the LSGM in

Equation 2, one of these conditions is that the connectivity matrix W be symmetric for

all pairs of edges, i.e. wij = wji. This symmetry condition, of course, implies that, in

contrast to the standard specification of SAR models, the connectivity matrix must not be

row standardized, as row-standardizing will violate this assumption.1 Model parameters may

be obtained by maximizing a log pseudo-likelihood (PL), which is a summation of the log of

the conditional distributions (Besag 1975):

logPL =
∑

i

{yi log(pi) + (1− yi) log(1− pi))}, (4)

1One benefit of this is that no standardization assumption is necessary.
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where

pi =
exp(Ai(y(Ni)))

1 + exp(Ai(y(Ni)))
(5)

The point estimates recovered by maximizing the PL function have been shown to be

consistent for the general case of Markov random fields models (Casleton, Nordman, and

Kaiser 2016; Guyon 1995). Standard errors may be obtained via parametric bootstrap or,

under certain assumptions, calculated via a Godambe information matrix (Godambe and

Kale 1991). In what follows, we use Monte Carlo simulations to demonstrate the properties

of the parameter estimates for the special case of the model presented in Equation 2, and

follow up with two empirical application to data on international alliances and legislative

cosponsorships.

Unlike the SAR model, LSGM is easily generalized to other distributions within the expo-

nential family by simply re-specifying the natural parameter function (Casleton, Nordman,

and Kaiser 2016). Thus, the above example could be re-formulated to model continuous,

multinomial, ordered, or count data. In this respect, LSGM, and Markov random fields

models more broadly,2 also present a more general modeling approach that does not re-

quire assumptions related to latent variable distributions, as is the case with SAR models

commonly used in political science.

4 Monte Carlo Simulations

We start by generating information for 100 observations (nodes) with characteristics captured

by variable Xi, drawn from a standard normal distribution. We proceed to convert these

data to a dyadic format (edges), i = 1, 2, . . . , n by pairing each observation with each other

observation and omitting self-referencing pairs of the type i− i for a total of n = 9900 edges.

2CAR models are, of course, a type of MRF models.
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Figure 2: Monte Carlo Results for Parameter Estimates
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Note: Vertical lines represent the true values of the parameters. The curves represent kernel
density graphs of the estimates within 90% confidence intervals.

To generate a meaningful connectivity matrix, W, we place each pair on an evenly spaced

ten-by-ten grid and calculate the Euclidean distance between the two units making up each

edge. Next, we use a Gibbs sampler with randomly initialized values to generate random

variable, Y (si).

The Gibbs sampler starts with the randomly generated starting values for the depen-

dent variable and iteratively updates them, one observation at a time, using the specified

parameter values, β0 = β1 = 1 and η = .05, following the data-generating process specified

in Equation 2. The Gibbs sampler was run with a burn-in of 20,000, after which sample

graphs were retained from 100,000 subsequent rounds with 50 iterations for thinning.

The results of the Monte Carlo simulations are presented in Figure 2. As expected, the

90% confidence intervals, displayed in the figure, converge around the true value of each

parameter. The positive coefficient η indicates the presence of a direct dependence among

the realizations of neighboring edges.
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5 Application: Formation of International Alliances

To further demonstrate the benefits of LSGM, we apply it to modeling the formation of

the international alliance network. One prominent theory in alliance research suggests that

alliances tend to form among states with similar policy orientations (Gibler and Rider 2004;

Lai and Reiter 2000). The logic is that ideationally similar states will naturally prefer

to join their forces to counter a common threat. This reasoning leads to several empirical

expectations. If we think of international alliances as network nodes and ideational distances

among them as network relationships, then the first expectation is that we should observe

that alliances will not be uniformly distributed within the ideational space, but will cluster

in opposite parts of of it. Moreover, there may be a balancing process, in which formation

of an alliance in one part of the ideational space will trigger a balancing act in the opposite

part of the ideational space (Schweller 2004). As most alliances are multilateral (Gibler and

Wolford 2006), we may also expect clustering of alliances within ideational space.

Figure 3 provides a visual demonstration of the modeling approach, and how it differs

from a more traditional network theories of alliances. Subfigure 3a shows a traditional

visualization of the alliance network with countries as nodes that are connected by edges if the

given pair of states were part of an alliance in a given year. Such a visualization corresponds

to the traditional theoretical framework within the alliance research—a framework that

models alliance formation as a function of state-level (node-level) and dyadic (edge-level)

covariates, such as joint democracy, military power or asymmetry, and bilateral trade (Lai

and Reiter 2000). Many important theories of alliance formation, such as “birds of a feather,”

as well as balancing and bandwagoning, posit processes that cannot be directly modeled using

state- and dyad-level attributes—processes that involve alliances (edges) forming in response

to other alliances that formed within the network. Modeling these important theoretical

processes requires reconceptualizing the alliance network as a network in which alliances
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Figure 3: Visualizing International Alliance Formation, 1955
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Notes: Alliance data are obtained from the Correlates of War Project (Gibler 2009).

themselves are treated as nodes, and relationships among them are treated as edges.

Subfigure 3b demonstartes such a reconceptualization. Each bilateral alliance relationship

is represented as a node, that is placed in an ideational Cartesian space in accordance with

the the ideational scores of each of the two allies that serve as the x and y coordinates.3 The

Euclidean distance between each pair of alliances then serves as a proxy for the ideational

dissimilarity between them (a continuous conceptualization of a relationship/edge).

This visualization of the international alliance network mimics the theoretical processes

posited by the the “birds of a feather” theory of alliance formation. Conceptualizing of

alliances in these terms uncovers a number of dynamics, consistent with this theoretical

framework. For example, Subfigure 3b shows that that international alliances tend to form

between ideologically similar rather than different states—most alliances cluster close to the

3We utilized ideal point scores, developed by Bailey, Strezhnev, and Voeten (2015). Bailey, Strezhnev,
and Voeten (2015) use UN voting data to align all countries on a standardized normal scale (from about -3
to +3) between 1947-2012, where higher scores are associated with the US and its allies and lower scores are
attributed to Russia/Soviet Union block. In Figure 3b, each alliance partner ideal point score provides one
of the alliance coordinates in a two dimensional space, and ideological distance is calculated as the Euclidean
distance between alliances.
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diagonal of the graph (the line y = x would represent the location of all alliance partners with

identical ideal scores) rather than in the areas off the diagonal. While this pattern is expected,

it is nonetheless useful to be able to confirm this intuition by visualizing the data in a relevant

way. Second, Subfigure 3b highlights clustering in two opposite areas of the ideological space,

which is consistent with the balancing logic described above. Third, Subfigure 3b reveals

some insights regarding the ideational cohesion within each of the opposing blocs that formed

in the given year: the Soviet bloc consisting of alliances among Russia, Czechoslovakia,

Hungary, Poland, and Romania is much more concentrated within the ideational space that

the bloc among the United Kingdom, Turkey, Pakistan, Iran, and Iraq.

Of course, possible connectivities among alliance edges are not limited to proximity/distance

of alliance-edges within ideational space. Alternative sources/conceptualization of connec-

tivity among alliances may focus on whether pairs of alliances connect similar states (e.g.,

two democracies) or share a common node. One may align alliance-edges in different types

of two-dimensional space, e.g. using various state-level attributes as coordinates.

In order to perform a statistical test of the balancing and clustering hypotheses de-

scribed above, we use international alliance formation data from the Correlates of War

Project (Gibler 2009). The dependent variable is a dichotomous measure of whether a pair

of states were part of an alliance in a given year. The estimation sample consists of all

politically relevant pairs of states between 1946-2000; the unit of analysis is a network edge

(formation/presence of an alliance).

A metric to define connectivity W between alliance is measured using each partner’s ideal

scores based on United Nations General Assembly voting (Bailey, Strezhnev, and Voeten

2015). We treat each potential ally’s ideal score as a coordinate, which allows us to align all

potential alliances in a two-dimensional space. Each ij cell of the W matrix thus contained

a measure of the Euclidean distance between i and j in this two-dimensional ideological

space. Shorter distances indicate policy similarity while greater distances indicate policy
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Table 1: Applying LSGM to Model International Alliance Formation, 1946-2000

Edge Connectivity:
Ideational Distance 0.016∗ (0.001)
Military Power Ratio −2.363∗ (0.073)
Dyadic Trade 0.015∗ (0.005)
Joint Democracy 0.884∗ (0.024)
Constant 0.094 (0.072)

Note: ∗p < 0.05 Standard errors are obtained using a
parametric bootstrap (1100 simulations of complete net-
works, 100 burnin and 50 iterations for thinning).

dissimilarity.

Finally, we include several control variables measured at the state-dyad-level. Consistent

with prior research, we expect that pairs of states are more likely to be part of a military

alliance if they engage in international trade and are jointly democratic (Lai and Reiter

2000). We also expect that states are more likely to ally if they are approximately even

in terms of military capabilities (Kimball 2006). Data on international trade are obtained

from the Correlates of War Project (Barbieri, Keshk, and Pollins 2009), and data on levels of

democracy are obtained fromMarshall and Jaggers (2014). Military Power Ratio is measured

as the ratio of the military capabilities of the more powerful state in a pair of states to the

total military capabilities of the pair, or max(m1,m2)
m1+m2

. Data on military symmetry/asymmetry

are obtained from Arena (2016).

The results of the estimation are presented in Table 1. The coefficient on Ideational

Distance is positive, indicating a balancing process: alliances-edges form in response to

other alliances-edges that realize in a ideationally different part of the network. This finding

is consistent with the balancing logic above, in which ideationally similar states balance

against the growing power of their adversaries. This resonates with a neoclassical version of

the realist balancing theory that qualifies the neorealist balancing hypothesis by highlighting

domestic preferences.

The coefficients on the control variables are as expected. Military Power Ratio has
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a negative effect, suggesting that symmetric alliances are more common than asymmetric

ones. Dyadic Trade and Joint Democracy have a positive effect, indicating that trade and

similar political institutions enhance military cooperation.

6 Application: Formation of Legislative Coalitions

In this section, we demonstrate an empirical application of LSGM to modeling legislative

cosponsorships in the Senate of the 107th Congress (2001-2003). We treat each pair of sena-

tors as a network edge, which is realized (takes on the value of 1) if two senators cosponsored

a piece of legislation; if the pair are not part of a joint cosponsorship, the edge between them

is coded as 0. We posit that legislative cosponsorships-edges are most likely to form in re-

sponse to other cosponsorship within the same issue area: thus, legislators from the opposite

parties may cosponsor competing pieces of legislation related to the same issue. For example,

ideologically liberal senators may cosponsor a bill stipulating an increase in minimum wage in

response to a piece of ideologically conservative legislature aimed at relaxing wage standards.

Likewise, once a bill on a given issue is introduced, legislators of similar political ideology

are likely to form cosponsorships with the original sponsor and each other. To zero in on the

process of such counter-balancing within an issue area, we narrow our focus to the bills that

are broadly related to labor, employment, and pensions, as well as the relevant appropriation

decisions, as coded by (Adler and Wilkerson 2006). Data on cosponsorships were obtained

from (Fowler 2006a,b). Analogous to the alliance example above, cosposorship-edges are

treated as located within an ideational space; each cosponsorship is mapped in a Cartesian

space using the DWNominate scores of the corresponding pair of senators as coordinates

(Poole and Rosenthal 2011).

Table 2 presents the results of the estimation. The coefficient on the Ideological Distance

is negative and statistically significant: cosponsorships cluster within ideational space. This
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Table 2: Applying LSGM to Model Senate Cosponsorships

Edge Connectivity:
Ideological Distance −1.235∗ (0.519)
Same Party 0.704∗ (0.051)
Labor Committee 0.149∗ (0.044)
Minimum Seniority −0.047∗ (0.010)
Constant 0.387∗ (0.089)

Notes: Standard errors were obtained using a parametric bootstrap
via a Gibbs sampler of 300 complete simulations (50 for burnin and
thinning.)

indicates that cosponsorship behavior is more likely, on average, to happen as a result of

bandwagoning than balancing. Most of the control variables act in expected directions. The

coefficient on Same Party is positive and statistically significant, suggesting that consponsor-

ships are more likely among members of the same party. The coefficient on Labor Committee

is positive and statistically significant, consistent with the logic that cosponsorships on labor

legislation are more likely to happen among a pair of legislators if at least one member of

the pair is part of the Health, Education, Labor, and Pensions Senate Committee. The

coefficient on Minimum Seniority is negative and statistically significant, which indicates

that senior pairs of legislators are less likely to cosponsor legislation than pairs with at least

one junior legislator.

7 Conclusion

This paper introduces an LSGM—a statistical estimator designed for modeling the formation

of local structures within networks. We demonstrated the desirable asymptotic properties

of the estimator using Monte Carlo simulations and provided two illustrative applications to

modeling the formation of the international alliance network and legislative coalitions. More

broadly, we emphasized the narrowness and inflexibility of the traditional network focus on

actors as nodes and relationships among them as edges. Adopting more flexible assumptions

20



of what constitutes nodes and edges helps model many localized network processes, such as

balancing, bandwagoning, and cascades.

LSGM has many potential applications to modeling information diffusion, or tipping-

point processes, such as community outreach related to building support for a particular

policy. The proposed framework easily extends to modeling localized formation of other

types of network structures, such as triangles or k-stars, albeit the theoretical mechanisms

behind such processes are currently under-developed. The LSGM provides a tool for testing

for such dependencies in a controlled, interpretable way.
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