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Abstract

How to distinguish frauds from consequences of strategic behavior is the primary challenge

for election forensics. Election forensics methods use empirical distributions of turnout and

vote choices to identify fraudulent activity. Strategic behavior can affect these

distributions. Generally, many types of election forensics methods interpret a multiplicity

of modes in election data as indicators of frauds, but strategic behavior induces

correlations among electors’ behavior that can produce multimodalities. We present

agent-based models (ABMs) designed to represent electors who decide how to act in

elections based both on their own tastes and on their beliefs about what the other electors

will do. In particular we define ABMs designed to match equilibria derived in models of

wasted vote logic and of strategic abstention, and we construct ABMs that have simulated

electors (agents) that use a combination of strategic abstention with wasted vote logic. To

facilitate computing pivotal vote probabilities, our ABMs use a Poisson games formulation

of the models instead of the fixed-electorate assumptions the formal models originally used.

We replicate the formal models’ basic equilibria. We apply election forensics statistical

tools to data simulated using the ABMs. Second-digit tests and a likelihood finite mixture

model are triggered: each signals “fraud” when in fact there is only strategic behavior.

Such a result supports our idea to use ABMs to calibrate election forensics statistical

methods so that fraud can be detected even in the presence of strategic buzz.



1 Introduction

A key challenge for election forensics—the field devoted to using statistical methods to

determine whether the results of an election accurately reflect the intentions of the

electors—is to be able to distinguish election results caused by election frauds from results

produced by strategic behavior or other normal politics (Mebane 2013a, 2016). Here we

report on our plan to use agent-based models (ABMs) (Axelrod 1997; Epstein 1999;

Axelrod and Tesfatsion 2006; Bruch and Atwell 2015; de Marchi and Page 2014) to produce

quantitatively specific realizations of theories of strategic election behavior and of election

frauds. We plan ultimately to use ABMs to simulate various election systems at realistic

scales, with agents that are involved in various kinds of networks and endowed with various

distributions of attributes, where agents engage in equilibrium behavior such as is studied

in formal models of rational election behavior (e.g. Palfrey and Rosenthal 1985; Cox 1994).

Here we show one example applying election forensics statistical tools to vote counts

simulated using an ABM that reflects electors acting strategically: the agents use a

combination of strategic abstention with wasted vote logic. Eventually we will introduce

various kinds of frauds into such systems. Among the questions for the long run will be to

what extent can statistical methods for election forensics discriminate strategic actions from

frauds, and can the methods help measure the extent and location of the frauds accurately.

1.1 Election Forensics

Election forensics studies counts of votes, counts of eligible voters and other traces of an

election—preferably at low levels of aggregation such as tallies for each polling station—to

produce evidence regarding what happened in the election. By starting with the numerical

results and other measures of the voting process election forensics does not address the

entirety of an election or address the full range of frauds that are possible (Lehoucq and

Jiménez 2002; Lehoucq 2003; Magaloni 2006; Schedler 2006; Levitsky and Way 2010;
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Minnite 2010; Birch 2011; Hyde and Marinov 2012; Svolik 2012; Wang 2012; Simpser 2013;

Stokes, Dunning, Nazareno and Brusco 2013; Norris 2014). For example, if parties are

excluded from the ballot, such an action may not produce distinctive patterns in the votes

that are cast. But some violations of electoral integrity such as unfair access to campaign

resources, wrongfully manipulated voter lists, vote buying, voter intimidation and other

coercive actions may produce distinctive patterns in votes that statistics can detect.

Ambiguities arise when such patterns might also be produced by strategic voting and other

normal political activites such as forming coalitions.

Many methods for trying to detect election frauds have been proposed (e.g. Myagkov,

Ordeshook and Shaikin 2009; Levin, Cohn, Ordeshook and Alvarez 2009; Shikano and

Mack 2009; Mebane 2010b; Breunig and Goerres 2011; Pericchi and Torres 2011; Cantu and

Saiegh 2011; Deckert, Myagkov and Ordeshook 2011; Beber and Scacco 2012; Hicken and

Mebane 2015; Montgomery, Olivella, Potter and Crisp 2015; Mebane 2016; Rozenas 2017;

Ferrari and Mebane 2017; Ferrari, McAlister and Mebane 2018). Methods based on the

second significant digits of vote counts have been shown to respond both to normal

political activities (strategic behavior, district imbalances, special mobilizations, coalitions)

and to frauds (Mebane 2013a, 2014). Methods that examine the last digit of vote counts

can be fooled if malefactors have sufficient control over the numbers (Mebane 2013b). All

the methods can effectively identify various kinds of anomalies, but assessing whether the

anomalies are due to frauds presents further challenges.

Some of the methods explicitly focus on the modality of election data. Some methods

in this vein emphasize that unproblematic elections feature unimodal distributions of

turnout and regular flows of votes—the latter are most compatible with assumed unimodal

distributions for parties’ shares of the votes (Myagkov, Ordeshook and Shaikin 2008, 2009;

Levin et al. 2009). Other contributions connect “spiky” (hence multimodal) distributions

of turnout and vote proportions to ideas about agents committing frauds in ways that they

intend to be detected (Kalinin and Mebane 2011; Mebane 2013b; Rundlett and Svolik
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2015). The sharpest contribution featuring multimodality is a model proposed by Klimek,

Yegorov, Hanel and Thurner (2012) that stipulates a particular functional form according

to which frauds occur.

Review of the theory (Borghesi 2009; Borghesi and Bouchaud 2010) that motivates the

Klimek et al. (2012) conception suggests, however, that multimodal distributions may be as

readily produced by strategic voting, coalitions and other strategic behavior as by election

frauds that stem from malevolent activity (for details see Mebane (2016)). That theory, as

it has been developed so far, does not imply that the distributions produced by strategic

voting and by frauds are the same: currently the theory is not specifically quantitative. But

the theoretical ambiguity about the origins of multimodality may carry over to make the

parameters of the Klimek et al. (2012) conception ambiguous. Many of the other statistical

methods also, on inspection, are crucially triggered by multimodalities and so may be

subject to similar ambiguities. An election may appear to have frauds when in fact it has

only robust politics featuring strategic activity by electors—by voters and would-be voters.

1.2 ABMs

We report on the initial steps of our plan to use ABMs to simulate strategic behavior and

frauds in various election systems at realistic scales.1 Previous efforts to use simulations

motivated by strategic voting ideas to develop data to use to assess election forensics

methods have not rigorously imposed equilibrium conditions, but have only roughly tried

to approximate expected consequences of such behavior. For instance, simulations have

shifted votes between candidates with references to the kind of behavior that happens

when voters act according to wasted vote logic (e.g. Mebane 2013a). Perhaps such

approaches capture some important qualitative aspects of what happens when voters act

1We recognize that some distinguish equation based models (EBMs) from ABMs (Parunak, Savit and
Riolo 1998). EBMs begin with equations that capture relationships between observable characteristics (party
preference, for instance), while ABMs begin with behaviors that define how individuals interact with one
another (Parunak, Savit and Riolo 1998). The literature is divided on whether this differentiation makes
sense; for any given computational model, there is a set of equations that could (theoretically) produce the
same result (Bonabeau 2002; Epstein 1999). For the purposes of this paper, we do not differentiate.
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that way, but there is no proof of that and there is little reason to believe the quantitative

details about how many votes are affected are correct. While some formal models have

equilibrium ideas with notions of frauds (e.g. Simpser 2013; Rundlett and Svolik 2015), no

simulations have attempted to achieve quantitative precision about what happens.

Here we take only the first steps toward such a plan. We use ABMs to replicate

equilibria obtained in two important formal models of elector behavior: the Palfrey and

Rosenthal (1985) model of strategic abstention, as updated by Demichelis and Dhillon

(2010) to include aspects of learning; and the Cox (1994) model of wasted vote behavior.

In both instances we modify the models to use the conception of Poisson games (Myerson

1998, 2000). Going beyond replication, we also consider a model that combines strategic

abstention with wasted vote behavior. Perhaps because of its complexity, such a

combination has not previously been considered in published work. Others have studied

election equilibria using the Poisson games formulation (e.g. Bouton and Gratton 2015).

We take a Poisson game approach to make it feasible to compute pivotal voting

probabilities (Myerson 1998).

Siegel (2018) discusses the relationship between computational models2 and game

theory, and in particular he considers how the steady states and limiting distributions of

computational models are similar to the equilibrium concepts of game theory. He

advocates a method to approximate the comparative statics of game theory: he proposes

starting with a simple model then considering sequences of more complicated models. For

our application we are not directly concerned with comparative statics, but we will

ultimately care about identifying the domains of attraction for various “equilibrium” sets.

We propose to generate simulated election data only from limiting points or sets. We use

“equilibria” to refer to such sets, whether they be points, cycles or chaotic attractors.

2Siegel (2018, 746) prefers to speak in terms of computational models instead of ABMs, but his discussion
covers the kinds of models we consider.
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2 Models

We start by developing models that resemble, respectively, the Palfrey and Rosenthal

(1983, 1985) model of strategic abstention and the Cox (1994) model of wasted vote

behavior. For the former model we adopt the “learning” approach previously used by

Demichelis and Dhillon (2010) to make points about the number of equilibria in some

variants of the Palfrey and Rosenthal (1983, 1985) model. For the Cox (1994) model we

use an iterative setup analogous to the framing by Fey (1997) that involves polling reports

of out-of-equilibrium results.

All the formal models refer to electors (for Palfrey and Rosenthal 1985) or voters (for

Cox 1994) formulating strategies based on pivotal vote calculations. Such calculations

involve each elector or voter calculating the probability that its vote creates or breaks a tie

for winning status—winning office or winning a seat. The models were originally developed

with the assumption that the size of the electorate or the number of voters is fixed and

known, and these models use multinomial formulations to describe the probability of vote

counts and therefore pivotal probabilities. Such multinomial tie probabilities are arduous

to compute when the number of electors or voters is large, so we adopt the idea that the

number is known only to be drawn from a Poisson distribution (Myerson 1998, 2000) which

simplifies computing pivotal probabilities. Using the Poisson assumption and Skellam

probabilities (Skellam 1946) we can replicate the most important features of the Palfrey

and Rosenthal (1985) and Cox (1994) models, but we can also explore versions of these

models that are infeasible to investigate using paper-and-pencil methods. We consider a

“learning-with-polling” model that combines strategic abstention with wasted vote

behavior.

2.1 Strategic Abstention

Palfrey and Rosenthal (1983, 1985) consider the classic instrumental formulation for the
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net benefits R from voting in an election with two alternatives:

R = pB − C +D , (1)

where p is the probability that an individual’s vote decides the election outcome (is

“pivotal”), B is the difference in benefits for the individual if the individual’s more

preferred choice wins instead of the alternative, C is the cost of voting and D is the direct

benefit from voting. Neither C nor D depend on the election outcome but depend only on

the individual deciding to participate in the election by voting. Palfrey and Rosenthal

(1985) demonstrate the existence of equilibria with positive turnout given a variety of

assumptions about the distributions of costs and uncertainty. Palfrey and Rosenthal (1985)

argue that turnout, when positive, is usually low.

Demichelis and Dhillon (2010) consider symmetric equilibria given the same net benefits

and structure as Palfrey and Rosenthal (1985), while adding learning dynamics. Demichelis

and Dhillon (2010) normalize (1) by setting B = 1, in which case a necesssary condition for

an individual to vote is p− 2c ≥ 0, where c = C −D. Letting q denote the symmetric

mixed strategy for all players and using g(q,M) to denote the probability of being pivotal,

Demichelis and Dhillon (2010, 881) suppose that q changes over time according to

dq

dt
= K(q) (2)

where sign K(q) = sign(g(q,M)− 2c).3 Demichelis and Dhillon (2010) investigate the

dynamic stability of equilibria.

2.2 Wasted Vote Logic

Cox (1994) considers situations where each voter casts a single vote, M alternatives “win”

3Demichelis and Dhillon (2010, 881) note that, “If the adjustment steps are small enough, taking a discrete
adjustment process would give essentially the same results.” Our ABMs use such discrete adjustments.
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the election by gaining seats and the M alternatives that have the M highest numbers of

votes win the seats. Assuming that each voter maximizes expected utility based on pivot

probabilities, that utilities are diverse,4 that the distribution of preferences is common

knowledge and that expectations about the election outcome are publicly generated (to the

point that Cox (1994, 610) imposes a rational expectations condition), Cox (1994) shows

that in the limit, as the number of voters grows, there are two kinds of equilibria. With

“Duvergerian” equilibria only the first loser (in M + 1-th place) receives a nonnegligible

proportion of the votes while other losers get nothing, and with “non-Duvergerian”

equilibria the losing alternatives have either the same positive proportion of votes as does

the first loser or zero votes. Cox (1994) notes that the formal findings about exact ties

between alternatives depend on particular simplifying features of the model. The empirical

tests he conducts of the theory are not quite so sharp.

2.3 Pivotal Probabilities

A key quantity in the considered models is the probability of an individual voter casting a

pivotal vote. Demichelis and Dhillon (2010) and Cox (1994) assume that electorate sizes

are fixed and commonly known. This allows calculation of pivotal probabilities through

exact combinatorial computation or multinomial assumptions. Though this approach can

yield results, calculation of these probabilities is computationally demanding. In order to

derive computationally efficient pivotal probabilities, we rely on an assumption that the

electorate size is only known up to the distribution. In particular, we apply the large

Poisson games framework derived by Myerson (2000).

There are Ne electors, but elector i ∈ {1, . . . , Ne} has incomplete knowledge about the

number of electors. Elector i assumes Ne is a Poisson distributed random variable with

4Cox (1994, 610) assumes that the electorate includes voters with all possible preference orders.
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mean µ:

Ne ∼ Pois(µ) . (3)

Elector i also receives information about the proportions of voters in the electorate that

will take certain actions: for candidate h ∈ {1, . . . , H}, it learns the proportion ph of voters

that are going to cast a vote for h. Let nh be the number of voters that vote for candidate

h. Given ph and the properties of Poisson random variables, nh is also treated as a Poisson

random variable:

nh ∼ Pois(phµ) .. (4)

To compute pivotal probabilities we are not concerned with the raw vote counts, rather

we want to know the probability distribution of one candidate’s vote counts relative to

other candidates. Let X and Y be independent Poisson random variables. Then

P (X − Y = z) = S(z;µx, µy) = exp(−(µx + µy))

(
µx

µy

)z
2
Iz
(
2
√
µxµy

)
(5)

where Iz(·) is a Bessel function of the first kind. S(·) is the Skellam distribution (Skellam

1946). Assuming Poisson vote counts, there are two situations in which i’s vote for party h

is pivotal: its vote pushes party h out of a tie and into a winning position or its vote

pushes party h into a tie for a winning position. Each elector evaluates pivotal probabilities

based on an imagined electorate that does not include its own vote. Using µ̃h = ph(µ− 1),

for a single winner election where the candidate with the most votes wins, this implies that

8



an elector’s probability of casting a pivotal vote for party h (pvh) is:

pvh =
∑
j 6=h

[P (µ̃h − µ̃j = 0|µ̃h, µ̃j ≥ µ̃m ∀ m 6= j, h)

+ P (µ̃h − µ̃j = −1|µ̃h, µ̃j ≥ µ̃m ∀ m 6= j, h)]
∏

m6=j,h

P (µ̃h − µ̃m > 0) .

(6)

In words, the probability that it casts a pivotal vote is the probability that it breaks or

creates a tie times the probability that party h is at least in second place.5 We can define

pvh in terms of Skellam distributions:

pvh =
∑
j 6=h

[S(0; µ̃h, µ̃j) + S(−1; µ̃h, µ̃j)]
∏

m 6=j,h

(
∞∑

w=1

S(w; µ̃h, µ̃m)

)
. (7)

This value can be evaluated computationally using Skellam implementations in various

statistical libraries.

2.4 Strategic Abstention with Wasted Vote Logic

To combine strategic abstention with wasted vote logic we let there be several parties—not

merely two parties—competing for one seat. The first step is to formulate the pivotal

probabilities. Then “learning” and “polling” proceed as previously.

Notation and definitions here follow, as closely as possible, those from Demichelis and

Dhillon (2010). Let i = 1, . . . , Ne index electors, and let j, h = 1, . . . , J index parties. nh as

defined in (4) is the number of voters that vote for candidate h = 1, . . . , J . Let `jh denote

the probability that j and h are the top two parties, with `jj = 0. Given that j and h are

the top two parties, define the following conditional probabilities:

• φi
1jh: conditional probability that elector i voting for j would break a tie between

parties j and h;

5Three-way ties are ignored.
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• φi
2jh: conditional probability that elector i voting for j would create a tie between

parties j and h;

• φi
3jh: conditional probability that elector i is not pivotal in relation to parties j and h

(does not break or make a tie between them) and party j leads;

• φi
4jh: conditional probability that elector i is not pivotal in relation to parties j and h

(does not break or make a tie between them) and party h leads.

Define αi
ajh = φi

ajh`jh, a = 1, . . . , 4. Let uij be the utility (or benefit) to elector i if party j

wins. Using Ei
jh and Ei

∅jh to denote respectively the expected utility, exclusive of the net

costs of the act of voting, for elector i from voting for j over h and from abstaining instead

of voting for j over h, assuming ties are broken at random we specify

Ei
jh = αi

1jhu
i
j + αi

2jh

uij + uih
2

+ αi
3jhu

i
j + αi

4jhu
i
h (8a)

Ei
∅jh = αi

1jh

uij + uih
2

+ αi
2jhu

i
h + αi

3jhu
i
j + αi

4jhu
i
h . (8b)

Hence, including the net cost of voting ci, the expected net benefit to i from voting for j is

Ri
j =

∑
h6=j

[Ei
jh − Ei

∅jh]− ci (9a)

=
∑
h6=j

(αi
1jh + αi

2jh)(uij − uih)− ci (9b)

=
∑
h

P i
jhB

i
jh − ci , P i

jh = αi
1jh + αi

2jh , Bi
jh = uij − uih . (9c)

(cf. McKelvey and Ordeshook 1972, 41–42). Given the Poisson assumptions P i
jh can be

evaluated using Skellam probabilities:

P i
jh = [S(0; µ̃j, µ̃h) + S(−1; µ̃j, µ̃h)]

∏
m6=j,h

(
∞∑

w=1

S(w; µ̃h, µ̃m)

)
. (10)

Evidently if every elector has the same belief about the vote proportions pj, then P i
jh is the
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same for all electors: P i
jh = Pjh, i = 1, . . . , Ne. Such is the case given an assumption that

information about the current (not necessarily in equilibrium) vote counts are conveyed to

everyone via a “poll” (i.e., “publicly generated”). In this case

Ri
j =

∑
h

PjhB
i
jh − ci . (11)

We consider models in which electors’ strategies are composed of a mixed strategy for

abstaining and a conditional pure strategy for party choice. Let qi ∈ [0, 1] denote the mixed

strategy for elector i: qi is the probability that elector i votes. Given P i
jh, if an elector

votes its choice is

j = argmax
j

Ri
j (12a)

= argmax
j

∑
h

P i
jhB

i
j,h . (12b)

Given qi and P i
jh, i = 1, . . . , Ne, using the indicator function I(·) the number of votes for j

is

nj =
∑
i

qiI

(
j = argmax

j

∑
h

P i
jhB

i
j,h

)

=
∑
i

qiI ij , I ij = I

(
j = argmax

j

∑
h

P i
jhB

i
j,h

)
.

A learning formulation for the mixed strategies, akin to (2) from Demichelis and

Dhillon (2010, 881), is

dqi

dt
= K

(∑
j

I ij
∑
h

P i
jhB

i
j,h − ci

)
(13a)

= K

(
max

j

∑
h

P i
jhB

i
j,h − ci

)
. (13b)
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Notice that (2) is for a symmetric mixed strategy q that every elector uses, while (13b) is

formulated in terms of individualized mixed strategies that are diverse across electors.6 We

can impose the restriction that for all electors qi = q.7 Diverse qi are feasible to investigate

when using ABMs but not generally when relying on paper-and-pencil analytic methods.

In connection with ABMs we use a difference equation form of the qi update: for some

small value ki,t,

qi,t+1 = qi,t + sign

(
max

j

∑
h

P i,t
jhB

i
jh − ci

)
ki,t , (14)

where the P i,t
jh are evaluated using ptj = nt

j/Ne, j = 1, . . . , J .8

If all electors have positive net costs, i.e., if ci > 0 for all i = 1, . . . , Ne, then the

dynamics of (13b) or (14) can produce situations even for small Ne where all qi = 0 hence

nj = 0 for all parties—no one votes! One can avoid such a situation by ensuring that ci < 0

for some electors. Or one can introduce a jump in the update rules: if nj = 0 for all j, then

set all P i
jh = 1 (or P i,t

jh = 1) and set qi = 1 (or qi,t+1 = 1) for all i that have uij > ci for some

j. Then nj (or nt+1
j ) reflects every elector acting sincerely. The system then continues.

6If there are two parties and electors’ utilities (ui1, u
i
2) are either (1, 0) or (0, 1), then (13b) defines a

version of (2) for individualized mixed strategies with utilities as in Demichelis and Dhillon (2010).
7The trick when defining a learning dynamic if qi = q for all electors is to decide what information each

elector has about other electors’ utilities and costs. If U is a distribution of utilities, B is the domain of Bi
jh

values, and C(q) (from Demichelis and Dhillon 2010) is a distribution of net costs expressed as a function of
the mixed strategy, then in line with Demichelis and Dhillon (2010, 888) we might specify

dq

dt
= K

∑
j

∫
B
Ij
∑
h

PjhBjhdU − C(q)

 .

8In practice we define ki,t in terms of qi,t to ensure ki,t is small enough not to produce artificial boundary
violations:

ki,t = 10blog10(min(1−qi,t,qi,t))c−2 : ki,t ≥ 10−6 .

E.g., if qi,t = .05 then ki,t = .0001.
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3 Replications

We present examples of ABMs built on a Poisson games foundation designed to replicate

basic results from Demichelis and Dhillon (2010) and Cox (1994). For Demichelis and

Dhillon (2010) our goal is to replicate Figure 2 in their paper. For Demichelis and Dhillon

(2010) we stick as closely as we can to the assumptions they used. Cox (1994) does not

provide an analogous specific replication target, so we illustrate how ABMs can produce

Duvergerian equilibria.9 Even though the scaling of utilities is inconsequential for our

ABM, we restrict utilities to be in the unit interval, as Cox (1994) assumes.

3.1 Strategic Abstention

We start by focusing on scenarios in which the two candidates A and B are supported by

the same proportions sA = 1− sB = .5 of electors, electors have the same net costs of

voting ci = c, i = 1, . . . , Ne, and all electors have the same mixed strategy probability

qi = q of voting. More specifically, we initialize each run of the model where half of the

electors support candidate A and the other half support candidate B, so NA = NB = Ne/2;

and we also define a value for q and c s.t. q ∼ U(0, 1) and c ∼ U(0, 0.5). We use an

expected electorate size µ = 400.

Let nA and nB be, respectively, the expected numbers of supporters of candidates A and

B that would go vote if the election happened at the current iteration of the model. Then

nj =

Nj∑
i

qi (15)

where i = 1, . . . , Nj are the electors that support candidate j ∈ {A,B}.

At each iteration t, each elector i updates its probability qi of voting, according to the

9To produce non-Duvergerian equilibria requires tuning utilities in ways we have not yet pursued.
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following difference equation:

qi,t+1 = qi,t +Ki(µ̃
t
A, µ̃

t
B) (16)

To implement K(.) (recall (2)) we follow Demichelis and Dhillon (2010) and use

Ki(µ̃A, µ̃B) = k sign(gi(µ̃A, µ̃B)− 2c) (17)

where k > 0 represents the learning speed mentioned in Demichelis and Dhillon (2010)10,

and gi(µ̃A, µ̃B) is the function that calculates the probabilities of elector i being to create

or break a tie in the election:

gi(µ̃A, µ̃B) =


S(0, µ̃A, µ̃B) + S(−1, µ̃A, µ̃B) if i supports A

S(0, µ̃B, µ̃A) + S(−1, µ̃B, µ̃A) if i supports B

(18)

where S is defined in (5). S(0, ...) and S(−1, ...) represent, respectively, the probability of

elector i being able to untie the election and the probability of i being able to tie the

election.11 With these specifications, (16) is a difference equation implementation of the

dynamic described in note 7 with only two parties (J = 2) as described in note 6.

The stability analysis summarized by Figure 2 in Demichelis and Dhillon (2010)

suggests that equilibrium points reached by (16) should depend not only on c but also on

the initial value specified for qt = qt0 .12 This is because Demichelis and Dhillon (2010)

10We set k adaptively as described in note 8.
11Given that the support of the Skellam density does not include zero, we set S = 0 if µ̃A = 0 or µ̃B = 0.
12Observed convergence in this model has been of two types, which we call hard convergence and bouncing,

hence we needed two convergence criteria to stop the simulation. A given run was considered to hard-converge
if the values of nA and nB remained the same for 50 iterations. Otherwise, a run could be stopped due to
achieving stable bouncing if nA and nB kept alternating between two exact same values every two iterations
for 50 iterations. Such bouncing is due to our specifying a lower bound for each ki,t: specifically we set
ki,t ≥ kmin = .000001; using smaller kmin values substantially increased the number of iterations while only
slightly reducing the frequency of bouncing. That includes allowing kmin be as small as floating point machine
precision. In both cases, since we are operating with floating point arithmetic, we consider equality over
iterations as being equality up to ε = 10−6; using smaller ε values does not materially change any results.
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identify three equilibria whenever c > cmin,13 but only “low turnout” and “full turnout”

equilibria are dynamically stable. The suggestion is that there is a nonempty domain of

initial values qt0 that produce the “full turnout” equilibrium.

In fact using our Poisson electorate assumption we find equilibrium depends only on c.

Figure 1 shows the final probability q of voting versus the net cost of voting c. We show

plots over a grid of c values separately for different values of initial qt0 . All electors are

expected to vote (q = 1) when c = 0 and indeed when c < c̃min: c̃min is the Poisson

electorate variant of what is cmin with fixed electorate assumptions. Whenever c > c̃min we

find equilibrium q > 0, with equilibrium q becoming very small as c rises. Because of the

way utilities are scaled in our model (we use (14) to implement this replication)

equilibrium q is positive for c as large as c = 1 instead of the upper bound of c = .5 that

applies for Demichelis and Dhillon (2010). The point about equilibrium depending only on

c is that we obtain the same equilibrium q regardless of the starting value. Even when

initial qt0 = 1, equilibrium q has the same value it does with as any other initial value.

*** Figure 1 about here ***

Our failure to reproduce a dynamically stable “full turnout” equilibrium when c > c̃min

is not surprising. Using fixed-electorate assumptions, Palfrey and Rosenthal (1985, 71–73)

prove that the wide range of full turnout equilibria does not exist for electorates as large as

we are using. Indeed, whenever nA or nB is not small, the Skellam distribution function

returns small values so that g(.) < 2 · c, which forces q to decrease.

Figure 1 also demonstrates that the variation in the realized electorate size Ne that the

Poisson electorate assumption introduces makes no essential difference for the pattern of

equilibrium q values. Figure 1(a) shows results when Ne ∼ Pois(400) is independently

drawn for every run of the simulation, while Figure 1(b) shows results when we use exactly

Ne = 368 (the same randomly drawn value) for every run. There is no perceptible

13Using equation (4) of Demichelis and Dhillon (2010, 877) for an electorate fixed at size M = 400,
cmin = .02821.
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difference in outcomes due to randomly varying the electorate size Ne.

Except for the differences regarding the “full turnout” equilibrium when c > c̃min, the

results shown in Figure 1 replicate the main equilibrium results shown in Figure 2 of

Demichelis and Dhillon (2010). In particular the stable “low turnout” equilibrium locus is

reproduced.

3.2 Wasted Vote Logic

Our replication of the Cox (1994) wasted vote model functions as follows. First we specify

a number of candidates and a number of electors. For each elector i = 1, . . . , Ne we

generate one utility value uij ∈ [0, 1] per candidate j = 1, . . . , J , with minj u
i
j = 0 and

maxj u
i
j = 1. Each utility is generated using uij ∼ Unif(0, 1), then the uij values are rescaled

for each elector to produce uij. Each elector has a utility value for every candidate. These

utilities are assumed to be von Neumann-Morgenstern consistent and indicative of at least

a weak preference ordering over the candidates.14 To match Cox (1994), we ensure that

across electors every possible rank order of candidates is present in the utility vectors (the

exact proportion that has each rank is determined randomly). Voters then start by

choosing any candidate other than their least preferred candidate to be their initial choice.

We let voters “state” any nondominated15 initial choice to capture effects of variation in

the initial beliefs that we have not yet modeled explicitly. Once they make this initial

choice, they use public information about the distribution of all voters’ current choices to

make a strategically optimal choice, vi, according to

ui∗h =
J∑

j=1

Th,j(u
i
h − uij)

vi = argmax
h=1,...,J

[ui∗h ]

(19)

14Given the double-precision pseudorandom numbers we use to generate utilities, no two utility values in
(0, 1) should be the same.

15An elector never votes for its least preferred candidate.
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where Th,j is the probability that an elector casts a pivotal vote for h against j. Using (7),

we set Th,j = pvh with nh being the current “stated” vote counts for candidates

h, j = 1, . . . , J .16

This procedure is iterative: each elector simultaneously updates its choice to be

strategically optimal conditional upon a) its utilities and b) every other electors’ current

choice. But after each step the state of the world has changed, so the strategic decisions

that were conditioned on other electors’ previous choices are no longer strategically

optimal. So in the next iteration of the model every elector simultaneously updates its

choices given each other electors’ current choices. The electors continue to update in this

manner until no electors’ strategic choices change for an arbitrary user-selected number of

iterations. At this point electors’ choices are in a strategic equilibrium.

Between any two runs of the model, there are therefore two elements of randomness.

The central source of randomness is the distribution by which electors’ utilities are

initialized. The second source of randomness is the arbitrary selection of voters’ initial

candidate choice. Different results can be obtained by changing the distribution of electors’

utilities, or by holding those utilities fixed while rerunning the model with different initial

choices. The first option is a completely different initial setup, which generates electors

that have meaningfully different preference structures. The second option is a perturbation

of the same initial electors and candidates, changing only the electors’ initial selection. A

run of the model with the initial selection varied yields an equilibrium in the set of

equilibria that are obtained by perturbing a model slightly away from the initial setup.

Such differences reflect the existence, generally, of multiple equilibria for any given set of

utilities (Myerson and Weber 1993).17

With these specifications of the model, our replication so far yields only one of the two

different outcomes which were derived by Cox (1994): over more than 15,000 runs we find

only the 2-candidate or M + 1 “Duvergerian” result in which one candidate wins, another

16In fact we use use (14) to implement this replication: all net costs are negative, so all qi = 1, and J > 2.
17We do not attempt to identify all equilibria nor to characterize the domains of attraction for the equilibria.
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candidate gets second place, and every other candidate falls to zero or near-zero votes.

Using uniform independent utilities evidently makes it unlikely that configurations of

utilities occur that are conducive to the existence of non-Duvergerian equilibria, in which

one candidate wins and all of the other candidates tie for last. We find the same kinds of

results when we run the model with several utility-generating distributions.18 We

conjecture that by tuning the utilities the model can produce non-Duvergerian equilibria,

but we have not yet attempted such tuning. We can produce different equilibria given the

same utilities by perturbing the initial choice of favored candidate (cf. Section 4.1.2).

4 Extensions

We consider extensions beyond the preceding replication-minded examples. Some

extensions we execute. These are simple generalizations of the strategic abstention and

wasted vote logic models done using the combined model of section 2.4. Other extensions

describe a couple of ways we might extend the combined model to include a wider array of

strategic features in the future.

4.1 Strategic Abstention with Wasted Vote Logic

We produce simulations using (14) for four purposes. First we illustrate generalizations of

Cox (1994) and Demichelis and Dhillon (2010) by allowing wasted vote logic and strategic

abstention simultaneously with individualized abstention mixed strategies. Second we show

that multiple equilibria can occur with substantial turnout in a moderate-sized electorate.

For this multiple equilibria example we illustrate the trajectories (or orbits) that can

occur—from initial values to equilibrium—both for aggregate vote counts and for

individual electors. Finally we use (14) to generate sets of vote counts to which we apply

election forensics tools. The election forensics question is whether even the simple kind of

18In addition to the uniform distribution, distributions we tried include standard normal, power law
(exponent 2), logistic (µ = 2, s = 1) and Beta (α = 0.01, β = 0.01) distributions.
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strategic behavior represented by the model of strategic abstention with wasted vote logic

can trigger “frauds” signals.

4.1.1 Generalizations

Unlike Demichelis and Dhillon (2010) we allow individualized mixed strategies qi instead of

the single symmetric mixed strategy that is their principal focus. For half of the

simulations we make all net costs positive with ci ∼ Beta(10, 10), ci ∼ Beta(.5, .5) or

ci ∼ Beta(1, 1) = Unif(0, 1). For the other half of the simulations we create ci the same way

but then multiply about 1/4 of the ci values (randomly selected) in each electorate by −1.19

We let the initial strategy values be uniformly distributed: qi,t0 ∼ Unif(0,1).20 We specify

the number of parties randomly from J ∈ {2, 3, 4, 5, 6}. For each elector i = 1, . . . , Ne we

generate utility values uij ∈ [0, 1] with minj u
i
j = 0 and maxj u

i
j = 1. Each utility is

generated using uij ∼ Beta(α1, α2) with α1 ∼ Unif(.1,5) and α2 ∼ Unif(.1,5), then the uij

values are rescaled for each elector to produce uij. We performed 2000 simulation runs.

In all simulation runs either two parties finish with positive expected vote counts while

all other parties (when J > 2) have expected counts of zero, or all parties have expected

vote counts of zero. All of the instances where all expected vote counts are zero occur when

all net costs are positive and generated by ci ∼ Beta(10, 10). Figure 2(a) shows a

scatterplot of the mean costs (c̄ = N1
e

∑
ci) and mean equilibrium mixed strategies

(q̄ = N1
e

∑
qi) when ci ∼ Beta(10, 10): for 97 of the 333 runs, q̄ = 0 which implies that all

qi = 0, so no one votes and all expected vote counts are zero.21 In Figure 2(d), which shows

c̄ and q̄ computed using only electors with positive net costs, many q̄ values are very small

but only one of those q̄ values equals zero. None of the small-looking q̄ values in the other

19We use Unif(0, 1) < .25 to decide whether to multiply ci by −1.
20Demichelis and Dhillon (2010) say their results hold for mildly dispersed initial qi values. Plainly

qi,t0 ∼ Unif(0,1) differs substantially from “mildly dispersed.”
21For the all-zero instances in Figure 2(a) we might have adopted the “jump” approach described on page

12, but we found that while sometimes a run went to a non-zero solution after starting over with everyone
voting sincerely for their most preferred party, sometimes the run went right back to the all-zero solution.
Instead of adopting some arbitrary rule to deal with such cyclical trajectories, we decided to leave Figure
2(a) as it is and add simulations that include some electors with negative costs. Hence Figures 2(d–f).
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scatterplots are zero, either.

The average mixed strategy q̄ for electors with positive net costs varies considerably

over simulations. In each case the value of q̄ traces to the proportion of such electors that

have equilibrium qi = 1, which relates to the proportion of electors that have smaller ci

values. With the U-shaped distribution of ci ∼ Beta(.5, .5) typically the highest proportion

of electors have small ci values, with ci ∼ Beta(1, 1) typically the proportion of such

electors is second highest and with the inverted-U-shaped distribution of ci ∼ Beta(10, 10)

the proportion of such electors is typically least. q̄ is typically greater in Figures 2(a–c)

than in the corresponding Figures 2(d–f) because with about a quarter of electors having

ci < 0 and consquently qi = 1, all such electors vote which tends to reduce the pivotal

probability values that affect qi for electors that have ci > 0.

*** Figure 2 about here ***

When net costs are rescaled to extend over smaller values, the resulting distributions of

equilibrium q̄ values traces a declining pattern as c̄ increases similar to that observed for

the symmetric mixed strategy q in Figure 1. Figure 3 displays this result. We rescale net

costs ci according to ci = sci for s ∈ {.05, .1, .2, .5, 1} where ci is randomly generated

according to Beta(10, 10), Beta(.5, .5) or Beta(1, 1). As the rescaling factor is smaller so

that ci is smaller, equilibrium q̄ tends to be larger. The variance of the q̄ values varies over

s partly because the variance of ci decreases with s2.

*** Figure 3 about here ***

Figure 4, which shows scatterplots of net costs and equilibrium mixed strategies for

individual electors taken from single simulations of (14), illustrates what we mean when we

say that q̄ traces to the proportion of such electors that have equilibrium qi = 1. Very few

electors have equilibrium mixed strategies that are not either zero or one. The exact

distribution of the number of electors in each run from Figure 2 that have equilibrium
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qi ∈ (0, 1) is reported in Table 1. For the Figure 2 runs that have all net costs positive the

modal number of electors with equilibrium qi ∈ (0, 1) is one for ci ∼ Beta(.5, .5) and

ci ∼ Beta(1, 1) and zero for ci ∼ Beta(10, 10). For the Figure 2 runs that have about a

quarter of electors with negative net costs the modal number of electors with equilibrium

qi ∈ (0, 1) is zero. The largest number of electors we observe with equilibrium qi ∈ (0, 1) is

eleven in one run with ci ∼ Beta(.5, .5). Moreover as Figure 4 suggests, many of the values

qi ∈ (0, 1) are much closer to zero or one than they are to .5. Table 2 shows that about

one-third of the Figure 2 runs with all net costs positive have one or two qi ∈ [.25, .75], but

when about a quarter of electors have negative net costs only about one-sixth of runs with

ci ∼ Beta(.5, .5) or ci ∼ Beta(1, 1) have one elector with such a mixed strategy and none of

the runs with ci ∼ Beta(10, 10) have such an elector.

*** Figure 4 and Tables 1 and 2 about here ***

4.1.2 Multiple Equilibria

As Myerson and Weber (1993) demonstrate for voting systems generally, multiple equilibria

exist in the model of strategic abstention with wasted votes. We show some of the different

equilibria that can arise with identical voter utilities.

Figure 5 shows scatterplots of net costs and equilibrium mixed strategies for individual

electors taken from single simulations of (14) with J = 5 parties, electorate size Ne = 1017

(µ = 1000) and costs compressed into ci ∈ (.015, .04) by using ci = .015 + .025ci for

ci ∼ Beta(1, 1). All four runs use identical net costs and identical utilities generated from

Beta(1, 1). Diverse initial values come from manipulating qi,t0 : Figure 5(a) begins with

qi,t0 ∼ Unif(0,1); Figure 5(b) begins with qi,t0 = 0.01 for all electors; Figure 5(c) begins

with qi,t0 = 0.99 if elector i most prefers party j ∈ {3, 4} else qi,t0 = 0.1; and Figure 5(d)

begins with qi,t0 = 0.99 if elector i most prefers party j ∈ {2, 3} else qi,t0 = 0.1.

*** Figure 5 about here ***
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In each scenario shown in Figure 5 two different parties have positive expected vote

counts in equilibrium while other parties have zero votes. In (a) parties 1 and 5 have

nj > 0 and in (b) parties 1 and 4 do. In both cases n1 is biggest. In (c) parties 3 and 4

have nj > 0 (n4 > n3), and in (d) parties 2 and 3 have nj > 0 (n3 > n2). Notably the last

equilibrium (d) occurs even though parties 2 and 3 are the parties whom the least electors

most prefer: 160 and 153 electors, respectively, most prefer parties 2 and 3, while 251, 225

and 228 electors respectively most prefer parties 1, 4 and 5. In scenario (d), the least

most-preferred party wins. Remarkably also scenario (d)—that has the, in a sense, least

liked parties winning and finishing second—is the scenario of the four that has the highest

expected turnout. In (d) each party with a positive number of votes receives more expected

votes than does any party in the other three scenarios. These are only a haphazardly

selected few of the distinctive equilibrium outcomes that exist given the stipulated utilities

and net costs, and only a few of the initial conditions that produce them.

4.1.3 Trajectories

Even though when simulating electorates for election forensics we are interested only in

equilibria, it is interesting at least for the purpose of better understanding dynamics to

examine the trajectories followed by aggregates such as vote counts as well as paths

followed by individual agents or groups of agents. In addition, given that we are simulating

elections, we must consider that sometimes the equilibrium may be a cycle of several

points, and at the extreme we may encounter equilibrium chaotic dynamics that while

confined to a bounded subspace is not strictly speaking cyclical.

In our current model using (14) we encounter “bouncing” limiting states that trace to

our imposing a positive lower bound for ki,t (recall note 8) and that we treat as equilibria.

In “bouncing” there are a few electors—sometimes only one elector—that oscillate between

pairs of values qi,t and qi,t+1 that differ very little from one another.22 We also sometimes

22Usually differences are the order of 10−6, which matches the minimum value we set for ki,t. As mentioned
in note 12, when we use smaller minimum values for ki,t some but not all instances of bouncing are eliminated.
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encounter longer cycles that seem like extended forms of bouncing: at least two electors i

and i′ produce a sequence of qi,t and qi
′,t values that form an extended cycle, again over a

numerically small range of values; in every case we’ve observed the resulting closed figure is

a rectangle; we have encountered such rectangles in which a single cycle occupies hundreds

of iterations (see e.g. Figure 6). We suspect these, too, are numerical artifacts due to our

imposing a positive lower bound for ki,t, and we consider such solutions to be equilibria.

We have not encountered more extensively ranging cycles, but we imagine such may occur,

even if perhaps not with the current voting rules.

*** Figure 6 about here ***

Orbits out of equilibrium are interesting for helping to understand the dynamics and,

possibly, to help when delineating domains of attraction for equilibria. We imagine the

domains of attraction expressed in terms of the space of vectors of the qi values of all

electors are too complicated to map, in general, and we do not sketch a plan for such

mapping here (cf. Siegel 2018). We illustrate a few trajectories just to give a taste of the

lurking complexities.

Figure 7 shows phase plots for the expected vote counts nj of the two parties that

exhibit positive vote counts in equilibrium in each scenario shown in Figure 5. A small

circle in each plot shows the initial vote count pair value. All four phase plots show

expected vote counts that increase or decrease greatly—sometimes both—and that often

spiral around. Of course nj is not a fundamental dynamic parameter of the model—the

fundamental dynamic parameters are the qi. So the appearance that some orbits cross

themselves in the figure is not problematic. It is fair to say the trajectories are at least

moderately complicated, although of course they are far simpler than the complexities we

would encounter with chaotic dynamics (Guckenheimer and Holmes 1986).

*** Figure 7 about here ***
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The orbits of electors’ mixed strategies may exhibit large oscillations, even the orbits of

electors that in equilibrium end up with qi = 0 or qi = 1. Figure 8 shows orbits for five

electors for each scenario shown in Figure 5. Electors are not matched across scenarios,

rather in each case we show the orbits of any electors that in equilibrium have qi ∈ (0, 1),

with the remaining electors chosen so that each of the five electors most prefers a distinct

candidate. Orbits of the two parties that exhibit positive vote counts in equilibrium in each

scenario are also shown. Perhaps most notable in all plots are the moments when some

electors rapidly oscillate between qi = 0 and qi = 1. That such rapid and large oscillations

occur while the aggregate counts vary only slightly reflects the fact that only a few electors

are exhibiting oscillations. Sometimes electors’ orbits move in what appears to be

synchrony (albeit sometimes opposingly) with other of the displayed electors. We expect

that many electors will exhibit such seemingly synchronized orbits, but we have yet to

check this.

*** Figure 8 about here ***

4.1.4 Election Forensics with Simulated Data

To evaluate whether the kind of strategic behavior modeled here can trigger some of the

statistical methods that are routinely used in election forensics, we generate 300 simulated

pairs of vote counts using 300 runs of (14), each with expected electorate size µ = 1000,

utilities generated using uij ∼ Beta(α1, α2) as described in Section 4.1.1, costs compressed

into ci ∈ (.015, .04) as described in Section 4.1.2 and initial values qi,t0 ∼ Unif(0,1). For

each run we use fresh draws of pseudorandom numbers. We take the two positive

equilibrium expected vote counts from each run and consider their rounded values to be

the “precinct” vote counts for two candidates in an election that we assess using election

forensics statistical methods.23 We should note that counts produced this way probably

23The first positive count is used for the first candidate, and the second positive count is used for the
second candidate.
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differ from those we would obtain if we simulated an electorate with an expected size of

300,000 that we divided into 300 precincts. We would need to design the precinct

groupings, costs would need to be set differently, and other changes might be desirable.

But the current simulated data support an initial quick-and-dirty check of whether, as

Mebane (2013a, 2016) suggests, the kinds of statistics used in election forensics might be

triggered by strategic behavior.

We observe that 300 is not a large sample size for election forensics analysis. With such

a small sample size, digit-based tests lack power. But such a sample size, or smaller, is often

presented for analysis as the precinct data from city or local elections. In any case, let’s see.

Using the digit and unimodality tests implemented in the Election Forensics Toolkit24

(Hicken and Mebane 2015) we obtain imprecise estimates for all of the digit tests and find

no significant departures from unimodality (Table 3). The spikes test (Rozenas 2017)—a

test on the proportions of the vote obtained by the winning candidate (here candidate

1)—also estimates that no fraud is present. But as Table 3 shows, the 2BL (second-digit

mean) statistic for the second candidate (highlighted in red) has a confidence interval that

does not include 4.187, which is the value expected according to the relevant Benford’s

Law-like distribution (see Mebane 2013a). As Mebane (2011, 2013a) suggests holds

extensively in a variety of electoral systems and for a variety of strategies, so here also we

find that strategic behavior triggers the second-digit test.

*** Table 3 about here ***

Estimates using the likelihood finite mixture model that was used in Mebane (2016)

also suggest there is significant “incremental fraud” (Klimek et al. 2012), produced mainly

by manufacturing votes from nonvoters. Table 4 reports the estimates. Statistical

significance is assessed using a likelihood ratio test versus a specification that omits frauds:

the likelihood ratio test statistic is 38.2, which we compare to a chi square distribution

with four degrees of freedom (p = 1.02e-07). The interpetation that votes are being

24See http://electionforensics.ddns.net:3838/test/.
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manufactured is based on the finite mixture model’s α parameter, which is estimated to be

α̂ = 11.0. These “frauds,” while statistically significant, are estimated to be rare. The

probability that a precinct experiences incremental fraud is estimated to be f̂i = .0076.

That’s about two precincts out of 300. In this instance, in line with the theoretical

argument and speculations of Mebane (2016), strategic behavior masquerades as a bit of

apparent fraud. Strategic behavior can create a kind of baseline buzz that signals of actual

frauds need to exceed.

*** Table 4 about here ***

4.2 Imagined Future Extensions

The model of strategic abstention with wasted vote logic reflects important aspects of the

strategic behavior that occur in elections, but many more kinds of strategies exist.

Anytime each elector takes into account its anticipations of what some other electors will

do, based on information that is at least approximately accurate and that is evaluated in a

somewhat rational manner, what we call strategic behavior occurs. The type of strategic

behavior implemented in our current ABMs is in a sense pristine, but of course the ABMs

can be made noisier and sloppier. Also other types of strategic behavior are well known

such as imitation, rational ignorance, threshold insurance, bandwagon dynamics and

coalitions. We sketch extensions of the model of strategic abstention with wasted vote logic

that relate to the latter two types of strategic behavior.

strategic “duty” Net costs are ci = Ci −Di. The bandwagon idea to make “duty”

strategic is to define Di = di(zi) for some function di and argument zi that is based

on some summary of other’s behavior or strategies. For instance, zi might be a

weighted sum of all others’ mixed strategies qi
′

with weights that increase as utilities

are more similar to the focal elector (e.g., for electors i and i′ and utility vectors ui

and ui
′
, the weight might be w(i, i′) = 〈ui, ui′〉/

√
‖ui‖‖ui′‖): an elector is more prone
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to vote if electors like it are more likely to vote. The weights might also reflect a

network imposed independent of utilities. Or weights—or zi directly—may reflect

how close an election outcome is expected to be. Such strategic duty may help

overcome a limitation of the strategic abstention framework, which is that pivotal

probabilities become so small in large electorates that turnout to cast an

instrumental vote never occurs if net costs are positive. Strategic duty also suggests a

variety of contagious voter suppression schemes it would be useful to simulate: e.g.,

force down qi for a few electors and similar electors become less likely to vote.

coalitions Parties may form coalitions, which may mean that instead of each standing

separately they offer a single coalition party alternative. If parties j and h form a

coalition labeled C(j, h), we can say electors form utilities for C(j, h) by taking a

weighted average of the utilities for the coalescing parties:

uiC(j,h) = τ ijhu
i
j + (1− τ ijh)uih , τ i ∈ (0, 1) .

Analogously for coalitions of more than two parties. Then if out of Jo “original”

parties JD of the “original” parties are in JC coalitions, then J = Jo − JD + JC parties

contest the election based on electors having the derived utilities.

As described so far the coalition construction is not strategic. To make coalitions

strategic make τ ijh a function of other electors’ mixed strategies. Using uij ∈ [0, 1] for

all electors and all parties, define

ξij =

∑
i′ 6=i(1− ui

′
j )qi

′

µ̃j

and let τ ijh = .5[1 + (ξih − ξij)]. If the other electors who are more likely to vote rate

both j and h (for whom they cannot vote) equally then uiC(j,h) is midway between uij

and uih, otherwise uiC(j,h) is closer to uij if likely voters rate j as better than h, and
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uiC(j,h) is closer to uih if h is better among likely voters than is j. Each elector thinks

the coalition C(j, h) is more similar to party j in C(j, h) the more other electors who

are likely voters support party j. It’s as if a coalition’s enthusiasts reveal where it

really stands.

Some thought will be needed to extend this idea to coalitions that contain more than

two parties.

5 Discussion

Using ABMs and a Poisson game information structure, we replicate basic equilibrum

results from Demichelis and Dhillon (2010) and Cox (1994). Symmetric mixed strategy

equilibria that Demichelis and Dhillon (2010) show are dynamically stable given their

learning model based on a differential equation we find are dynamically stable using,

effectively, difference equations. We find that Duvergerian equilibria such as Cox (1994)

studies are dynamically stable in our system. We generalize Cox (1994) and Demichelis

and Dhillon (2010) by simulating a model that combines strategic abstention with wasted

vote logic: the model features a mixed strategy for abstention and a conditional pure

strategy for the vote choice. We exhibit multiple equilibria in the combined model

produced by different initial values for electors’ abstention mixed strategies (compare

Bouton and Gratton 2015).

Finding these equilibria requires careful attention to numerical details.25 Using the

Poisson game approach with Skellam distributions, pivotal probabilities are extremely

small with large electorates. The expected electorate sizes we use here, µ = 400 and

µ = 1000, are not large compared to the country-scale electorates that will ultimately

concern us. So far we have been able to work effectively with double-precision arithmetic,

25Currently our simulation code is written in Python 3 (Python Core Team 2015) using GNU Parallel
(Tange 2011), with analysis tools written in R (R Development Core Team 2011). Keeping track of the
source code, conditions, arguments, orbits and equilibria across many variants and simulation runs depends
on carefully executed database infrastructure. We use PostgreSQL (Stonebraker and Rowe 1986).
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but when electorates are much larger use of extended precision numerical libraries will be

important when pursuing models that rely on pivotal probabilities. Probably in very large

electorates it will be both practically and theoretically reasonable to move away from a

sharp focus on accurate and precise pivotal probabilities.

In our simulations we still encounter some anomalous (if numerically small) behavior

that traces to numerical imprecision in implementing dynamics. Possibly we will need to

abandon our approach using difference equations—that is, each agent updates at discrete

time steps—even with adaptive learning rates. Adaptive learning rates make it tricky to

argue that all agents are moving synchronously in time: each agent’s time scale is

interpretable only relative to its learning rates. But as long as, for election forensics

purposes, we care only about equilibria and do not interpret orbits out of equilibrium, we

think the loss of temporal comparability across agents is unimportant. But either because

worse anomalies arise from the difference equation approach or because our focus

changes—perhaps we will imagine elections occur before an equilibrium point is

reached—we may move to a differential or difference-differential scenario. A

difference-differential scenario may arise if we think that agents evolve in continuous time

but “polls” that update their information about expected election outcomes occur at

discrete moments.

We do not yet incorporate elector beliefs explicitly into the models. Agents also have

fixed preferences. In the current implementations information is updated without reference

to any prior beliefs—other than whatever beliefs are implicit in the specification of the

current state—based on public information about the currently expected outcome of the

election. We are considering whether to augment the models to make agents explicitly

Bayesian, and we will investigate what happens when information is more limited. For

example, agents may learn about the intentions only of their neighbors, in various senses of

“neighbor.” Or agents may be only adaptively rational.

It is remarkable that literally our first attempt generating a simulated electorate
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produces data that trigger some election forensics statistical methods. That 2BL is

triggered generally matches findings reported by Mebane (2013a), but the simulation

model’s strategic mechanism lacks features such as ballot box disaggregations or district

imbalances that Mebane (2006a,b, 2007, 2008, 2010a, 2012, 2013a) shows in simpler

simulations can stimulate departures from the Benford’s Law-like distribution. Perhaps the

model of strategic abstention with wasted vote logic matches some aspects of the kinds of

strategies involved in coordinating voting in the United States, threshold insurance in

Germany and responses to coalitions in Mexico, all of which are associated with systematic

patterns in the second-digit means (Mebane 2013a). But to clarify matters we’ll want to

develop more focused ABMs that more sharply represent such processes.

That the likelihood finite mixture model is triggered matches the findings of Mebane

(2016), but we need to do more to explore the modality of the turnout and voting

distributions in the simulated data and to identify what about the strategic mechanism

enhances such multimodality.

In general our idea is to construct models for various election systems and strategies

and calibrate how a variety of strategies affect various election forensics methods. If we can

demarcate the patterns induced by strategic buzz, then signals genuinely triggered by

frauds can stand out. In addition we can simulate various kinds of frauds. A grand vision

is to use election forensics tools to extract features from election data, with the

interpretation of those features guided by machine learning tools that have been trained

using data simulated by ABMs. With ABMs we know exactly the conditions used to

simulate data and exactly what every simulated elector does, so labelling training sets

involves no ambiguity whatsoever. Such methods may help reduce tremendously the extent

to which election forensics depends on a few stark cases and on a lot of more or less well

informed interpretation.
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modèles sur des élections françaises.” arXiv:0910.4661[physics.soc-ph].

Borghesi, C. and J. P. Bouchaud. 2010. “Spatial Correlations in Vote Statistics: A Diffusive

Field Model for Decision-making.” European Physical Journal B 75(3):395–404.

Bouton, Laurent and Gabrielle Gratton. 2015. “Majority runoff elections: Strategic voting

and Duverger’s hypothesis.” Theoretical Economics 10:283–314.

Breunig, Christian and Achim Goerres. 2011. “Searching for Electoral Irregularities in an

Established Democracy: Applying Benford’s Law Tests to Bundestag Elections in Unified

Germany.” Electoral Studies 30(3):534–545.

Bruch, Elizabeth and Jon Atwell. 2015. “Agent-Based Models in Empirical Social Research.”

Sociological Methods & Research 44(2):186–221.

URL: http://journals.sagepub.com/doi/10.1177/0049124113506405

Cantu, Francisco and Sebastián M. Saiegh. 2011. “Fraudulent Democracy? An Analysis

of Argentina’s Infamous Decade Using Supervised Machine Learning.” Political Analysis

19(4):409–433.

Cox, Gary W. 1994. “Strategic Voting Equilibria Under the Single Nontransferable Vote.”

American Political Science Review 88:608–621.

31



de Marchi, Scott and Scott E. Page. 2014. “Agent-Based Models.” Annual Review of Political

Science 17(1):1–20.

URL: http://www.annualreviews.org/doi/10.1146/annurev-polisci-080812-191558

Deckert, Joseph, Mikhail Myagkov and Peter C. Ordeshook. 2011. “Benford’s Law and the

Detection of Election Fraud.” Political Analysis 19(3):245–268.

Demichelis, Stefano and Amrita Dhillon. 2010. “Learning in Elections and Voter Turnout.”

Journal of Public Economic Theory 12(5):871–896.

Epstein, Joshua M. 1999. “Agent-based computational models and generative social science.”

Complexity 4(5):41–60.

Ferrari, Diogo, Kevin McAlister and Walter R. Mebane, Jr. 2018. “Developments in Positive

Empirical Models of Election Frauds: Varying Dimensions.” Paper presented at the 2018

Annual Meeting of the Midwest Political Science Association, Chicago, April 5–8, 2018.

Ferrari, Diogo and Walter R. Mebane, Jr. 2017. “Developments in Positive Empirical Mod-

els of Election Frauds.” Paper presented at the 2017 Summer Meeting of the Political

Methodology Society, Madison, WI, July 13–15, 2017.

Fey, Mark. 1997. “Stability and Coordination in Duverger’s Law: A Formal Model of Pre-

election Polls and Strategic Voting.” American Political Science Review 91(1):135–147.

Guckenheimer, John and Philip Holmes. 1986. Nonlinear Oscillations, Dynamical Systems

and Bifurcations of Vector Fields. New York: Springer-Verlag.

Hicken, Allen and Walter R. Mebane, Jr. 2015. “A Guide to Election Forensics.” Working pa-

per for IIE/USAID subaward #DFG-10-APS-UM, “Development of an Election Forensics

Toolkit: Using Subnational Data to Detect Anomalies”.

Hyde, Susan D. and Nikolay Marinov. 2012. “Which Elections Can Be Lost?” Political

Analysis 20(2):191–201.

Kalinin, Kirill and Walter R. Mebane, Jr. 2011. “Understanding Electoral Frauds through

Evolution of Russian Federalism: from “Bargaining Loyalty” to “Signaling Loyalty”.”

Paper presented at the 2011 Annual Meeting of the Midwest Political Science Association,

32



Chicago, IL, March 31–April 2.

Klimek, Peter, Yuri Yegorov, Rudolf Hanel and Stefan Thurner. 2012. “Statistical Detection

of Systematic Election Irregularities.” Proceedings of the National Academy of Sciences

109(41):16469–16473.

Lehoucq, Fabrice. 2003. “Electoral Fraud: Causes, Types, and Consequences.” Annual

Review of Political Science 6:233–256.
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Table 1: Numbers of Electors Whose Equilibrium Mixed Strategies are not Zero or One

net costs
Number all positive some negative

of Electors Beta parameters Beta parameters
with qi ∈ (0, 1) .5 1 10 .5 1 10

0 107 99 110 191 198 299
1 159 166 97 117 83 0
2 30 42 70 30 19 30
3 26 19 39 9 3 0
4 2 2 13 3 4 8
5 4 5 2 4 0 0
6 1 1 0 0 1 0
7 2 0 0 1 0 0
8 0 0 1 0 0 0
10 0 1 1 0 0 0
11 1 0 0 0 0 0

Note: frequency of runs for each costs-utility (-Beta parameter) condition shown in Figure
2 that have the indicated number of equilibrium mixed strategies qi that are not either zero
or one.

Table 2: Numbers of Electors Whose Equilibrium Mixed Strategies are in [.25,.75]

net costs
Number all positive some negative

of Electors Beta parameters Beta parameters
with qi ∈ [.25, .75] .5 1 10 .5 1 10

0 229 226 209 301 263 337
1 99 103 107 54 45 0
2 4 6 17 0 0 0

Note: frequency of runs for each costs-utility (-Beta parameter) condition shown in Figure
2 that have the indicated number of equilibrium mixed strategies qi ∈ [.25, .75].



Table 3: Digit and Unimodality Tests Using Simulated Data

Name 2BL LastC P05s C05s DipT Obs

Turnout 4.46 4.593 .187 .21 .872 300
(4.123, 4.78) (4.24, 4.94) (.143, .233) (.16, .253) –

cand 1 4.25 4.41 .163 .2 .467 300
(3.92, 4.593) (4.104, 4.693) (.117, .203) (.157, .247) –

cand 2 4.53 4.35 .163 .207 .467 300
(4.207, 4.85) (3.993, 4.68) (.123, .203) (.16, .253) –

Note: “2BL,” second-digit mean; “LastC,” last-digit mean; “C05s,” mean of variable indicating
whether the last digit of the vote count is zero or five; “P05s,” mean of variable indicating
whether the last digit of the rounded percentage of votes for the referent party or candidate is
zero or five; “DipT,” p-value from test of unimodality; “Obs,” number of polling station
observations. Values in parentheses are nonparametric bootstrap confidence intervals.

Table 4: Finite Mixture Model Parameter Estimates Using Simulated Data

Election f̂i f̂e α̂ θ̂ τ̂ ν̂ LR n
data simulated using (14) .00759 0 11.0 .657 .372 .497 38.2 300

Note: LR is the likelihood ratio test statistic for the hypothesis that there are no frauds
(i.e., that fi = fe = 0). n is the number of simulated precinct observations.



Figure 1: Probability of voting (q) versus cost of voting (c)

(a) identical expected electorate sizes (µ = 400)

(b) identical electorate sizes (Ne = 368)



Figure 2: Strategic Abstention-Wasted Vote Model: Mean Costs and Strategies
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Note: mean net costs and mean mixed strategies for electors that have positive net costs in
simulations of (14) using µ = 400 for various net cost distributions. All net costs positive:
(a) costs from Beta(10,10), n = 333; (b) costs from Beta(.5,.5), n = 332; (c) costs from
Beta(1,1), n = 335. About 1/4 of net costs made negative: (d) costs from Beta(10,10),
n = 337; (e) costs from Beta(.5,.5), n = 355; (f) costs from Beta(1,1), n = 308.



Figure 3: Strategic Abstention-Wasted Vote Model: Mean Costs and Strategies, Rescaled
Costs
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Note: mean net costs and mean mixed strategies for electors that have positive net costs in
simulations of (14) using µ = 400 for various net cost distributions. All net costs positive,
rescaled respectively by ci = sci for s ∈ {.05, .1, .2, .5, 1} where ci is randomly generated as
follows: (a) costs from Beta(10,10), n ∈ (307, 328, 337, 340, 333); (b) costs from Beta(.5,.5),
n ∈ (349, 311, 349, 330, 332); (c) costs from Beta(1,1), n =∈ (344, 361, 314, 330, 335). About
1/4 of rescaled net costs made negative: (d) costs from Beta(10,10),
n =∈ (350, 335, 308, 342, 337); (e) costs from Beta(.5,.5), n =∈ (320, 325, 346, 318, 355); (f)
costs from Beta(1,1), n =∈ (330, 340, 346, 340, 308).



Figure 4: Strategic Abstention-Wasted Vote Model: Elector Costs and Strategies
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(d) Beta = 10
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(e) Beta = 0.5
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Note: net costs and mixed strategies for electors in single simulations of (14) using µ = 400
for each net cost distribution. All net costs positive: (a) costs from Beta(10,10); (b) costs
from Beta(.5,.5); (c) costs from Beta(1,1). About 1/4 of net costs made negative: (d) costs
from Beta(10,10); (e) costs from Beta(.5,.5); (f) costs from Beta(1,1).



Figure 5: Strategic Abstention-Wasted Vote Model: Elector Costs and Strategies, Multiple
Equilibria

(a) final expected vote counts: (b) final expected vote counts:
143.77893050997648, 0, 0, 0, 132 163.733, 0, 0, 157, 0
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(c) final expected vote counts: (d) final expected vote counts:
0, 0, 64, 80.036782999999971, 0 0, 177, 181.47101000000001, 0, 0
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Note: net costs and mixed strategies for electors in four simulations of (14) (µ = 1000,
Ne = 1017, J = 5) with identical utilities across simulations for a compressed net cost
distribution. All net costs positive: ci = .015 + .025ci where ci ∼ Beta(1, 1).
Sincere vote (first-preference) counts: 251, 160, 153, 225, 228.



Figure 6: Strategic Abstention-Wasted Vote Model: Expected Vote Count Phase Plots

(a) full orbit (b) limiting cycle
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Note: phase plots of expected vote counts for the two parties that have positive vote counts
in Duvergerian equilibrium in a simulation of (14) (µ = 1000, J = 5). In (a) the initial
expected vote count values are indicated using a circular point. (b) shows the limiting
cycle (cycle length 205 iterations); the orbit travels clockwise around the box.



Figure 7: Strategic Abstention-Wasted Vote Model: Expected Vote Count Phase Plots,
Multiple Equilibria

(a) final expected vote counts: (b) final expected vote counts:
143.77893050997648, 0, 0, 0, 132 163.733, 0, 0, 157, 0
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(c) final expected vote counts: (d) final expected vote counts:
0, 0, 64, 80.036782999999971, 0 0, 177, 181.47101000000001, 0, 0
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Note: phase plots of expected vote counts for the two parties that have positive vote counts
in Duvergerian equilibrium in four simulations of (14) (µ = 1000, Ne = 1017, J = 5) with
identical utilities across simulations for a compressed net cost distribution. The initial
expected vote count values are indicated using circular points. All net costs positive:
ci = .015 + .025ci where ci ∼ Beta(1, 1).
Sincere vote (first-preference) counts: 251, 160, 153, 225, 228.



Figure 8: Strategic Abstention-Wasted Vote Model: Mixed Strategy Orbits, Multiple Equi-
libria

(a) final expected vote counts: (b) final expected vote counts:
143.77893050997648, 0, 0, 0, 132 163.733, 0, 0, 157, 0

(c) final expected vote counts: (d) final expected vote counts:
0, 0, 64, 80.036782999999971, 0 0, 177, 181.47101000000001, 0, 0

Note: orbits of mixed strategies for five electors in four simulations of (14) (µ = 1000,
Ne = 1017, J = 5) with identical utilities across simulations for a compressed net cost
distribution. All net costs positive: ci = .015 + .025ci where ci ∼ Beta(1, 1). The five
electors in each plot have distinct most-preferred candidates.


